Biometric Hashing Based on Genetic Selection and Its Application to On-Line Signatures

  • Manuel R. Freire
  • Julian Fierrez
  • Javier Galbally
  • Javier Ortega-Garcia
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4642)

Abstract

We present a general biometric hash generation scheme based on vector quantization of multiple feature subsets selected with genetic optimization. The quantization of subsets overcomes the dimensionality problem of other hash generation algorithms, while the feature selection step using an integer-coding genetic algorithm enables to exploit all the discriminative information found in large feature sets. We provide experimental results of the proposed hashing for verification of on-line signatures. Development and evaluation experiments are reported on the MCYT signature database, comprising 16,500 signatures from 330 subjects.

Keywords

Biometric Hashing Biometric Cryptosytems Feature Selection Genetic Algorithms 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jain, A.K., Ross, A., Pankanti, S.: Biometrics: A tool for information security. IEEE Trans. on Information Forensics and Security 1(2), 125–143 (2006)CrossRefGoogle Scholar
  2. 2.
    Uludag, U., Pankanti, S., Prabhakar, S., Jain, A.K.: Biometric cryptosystems: Issues and challenges. Proceedings of the IEEE 92(6), 948–960 (2004)CrossRefGoogle Scholar
  3. 3.
    Bolle, R.M., Connell, J.H., Ratha, N.K.: Biometric perils and patches. Pattern Recognition 35(12), 2727–2738 (2002)MATHCrossRefGoogle Scholar
  4. 4.
    Hoque, S., Fairhurst, M., Howells, G., Deravi, F.: Feasibility of generating biometric encryption keys. Electronics Letters 41(6), 309–311 (2005)CrossRefGoogle Scholar
  5. 5.
    Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA (1989)MATHGoogle Scholar
  6. 6.
    Plamondon, R., Srihari, S.N.: On-line and off-line handwriting recognition: A comprehensive survey. IEEE Trans. PAMI 22(1), 63–84 (2000)Google Scholar
  7. 7.
    Fierrez, J., Ortega-Garcia, J.: On-line signature verification. In: Jain, A.K., Ross, A., Flynn, P. (eds.) Handbook of Biometrics (to appear)Google Scholar
  8. 8.
    Juels, A., Sudan, M.: A fuzzy vault scheme. Design Code. Cryptogr. 38(2), 237–257 (2006)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Uludag, U., Pankanti, S., Jain, A.K.: Fuzzy vault for fingerprints. In: Kanade, T., Jain, A., Ratha, N.K. (eds.) AVBPA 2005. LNCS, vol. 3546, pp. 310–319. Springer, Heidelberg (2005)Google Scholar
  10. 10.
    Uludag, U., Jain, A.K.: Securing fingerprint template: Fuzzy vault with helper data. In: Proc. CVPRW, p. 163. IEEE Computer Society, Los Alamitos (2006)Google Scholar
  11. 11.
    Freire-Santos, M., Fierrez-Aguilar, J., Ortega-Garcia, J.: Cryptographic key generation using handwritten signature. In: Proc. SPIE., vol. 6202, pp. 225–231 (2006)Google Scholar
  12. 12.
    Vielhauer, C., Steinmetz, R., Mayerhoefer, A.: Biometric hash based on statistical features of online signatures. In: Proc. ICPR., vol. 1, pp. 123–126 (2002)Google Scholar
  13. 13.
    Vielhauer, C., Steinmetz, R.: Handwriting: Feature correlation analysis for biometric hashes. EURASIP JASP 2004(4), 542–558 (2004)Google Scholar
  14. 14.
    Teoh, A.B., Goh, A., Ngo, D.C.: Random multispace quantization as an analytic mechanism for biohashing of biometric and random identity inputs. IEEE Trans. PAMI 28(12), 1892–1901 (2006)Google Scholar
  15. 15.
    Lumini, A., Nanni, L.: An improved biohashing for human authentication. Pattern Recognition 40(3), 1057–1065 (2007)MATHCrossRefGoogle Scholar
  16. 16.
    Ngo, D.C.L., Teoh, A.B.J., Goh, A.: Biometric hash: high-confidence face recognition. IEEE Trans. Circ. Syst. Vid. 16(6), 771–775 (2006)CrossRefGoogle Scholar
  17. 17.
    Dodis, Y., Reyzin, L., Smith, A.: Fuzzy extractors: How to generate strong keys from biometrics and other noisy data. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 523–540. Springer, Heidelberg (2004)Google Scholar
  18. 18.
    Lin, S., Costello, D.J.: Error Control Coding, 2nd edn. Prentice-Hall, Inc., Upper Saddle River, NJ, USA (2004)Google Scholar
  19. 19.
    Pudil, P., Novovicova, J., Kittler, J.: Floating search methods in feature selection. Pattern Recogn. Lett. 15(11), 1119–1125 (1994)CrossRefGoogle Scholar
  20. 20.
    Ortega-Garcia, J., et al.: MCYT baseline corpus: A bimodal biometric database. IEE Proc. Vision, Image and Signal Processing 150(6), 395–401 (2003)CrossRefGoogle Scholar
  21. 21.
    Theodoridis, S., Koutroumbas, K.: Pattern Recognition. Academic Press, San Diego (2006)MATHGoogle Scholar
  22. 22.
    Fierrez-Aguilar, J., et al.: An on-line signature verification system based on fusion of local and global information. In: Roli, F., Vitulano, S. (eds.) ICIAP 2005. LNCS, vol. 3617, pp. 523–532. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  23. 23.
    Jain, A.K., Nandakumar, K., Ross, A.: Score normalization in multimodal biometric systems. Pattern Recognition 38(12), 2270–2285 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Manuel R. Freire
    • 1
  • Julian Fierrez
    • 1
  • Javier Galbally
    • 1
  • Javier Ortega-Garcia
    • 1
  1. 1.Biometric Recognition Group - ATVS, Escuela Politecnica Superior, Universidad Autonoma de Madrid, C/ Francisco Tomas y Valiente 11, E-28049 MadridSpain

Personalised recommendations