Color-Based Iris Verification

  • Emine Krichen
  • Mohamed Chenafa
  • Sonia Garcia-Salicetti
  • Bernadette Dorizzi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4642)

Abstract

In this paper we propose a novel iris recognition method for iris images acquired under normal light illumination. We exploit the color information as we compare the distributions of common colors between a reference image and a test image using a modified Hausdorff distance. Tests have been made on the UBIRIS public database and on the IRIS_INT database acquired by our team. Comparisons with two iris reference systems in controlled scenario show a significant improvement when using color information instead of texture information. On uncontrolled scenarios, we propose a quality measure on colors in order to select good images from bad ones in the comparison process.

Keywords

Iris recognition Hausdorff distance quality measure Gaussian Mixture Models 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
  2. 2.
    Emine Krichen, M., Mellakh, A., Garcia-Salicetti, S., Dorizzi, B.: Iris Identification Using Wavelet Packets. In: ICPR 2004. 17th International Conference on Pattern Recognition, Cambridge, UK, 23-26 August 2004, vol. 4, pp. 335–338 (2004)Google Scholar
  3. 3.
    Sun, Z., Wang, Y., Tan, T., Cui, J.: Improving iris recognition accuracy via cascaded classifiers. IEEE Transactions on Systems, Man, and Cybernetics, Part C 35(3), 435–441 (2005)CrossRefGoogle Scholar
  4. 4.
  5. 5.
    Wildes, R.: Automated iris recognition: An emerging biometric technology. Proceedings of the IEEE 85 (9), 1348–1363 (1997) Awarded IEEE Donald G. Fink Prize Paper AwardGoogle Scholar
  6. 6.
  7. 7.
    Daugman, J.: How iris recognition works. IEEE Transactions on Circuits and Systems fo Video Technology 14(1) (January 2004)Google Scholar
  8. 8.
    Dubuisson, M.-P., Jain, A.K.: A modified Hausdorff distance for object matching. Pattern Recognition (1994). In: Conference A: Computer Vision & Image Processing, Proceedings of the 12th IAPR International Conference, 9-13 October 1994, vol. 1, pp. 566–568 (1994)Google Scholar
  9. 9.
    Mathworks, Inc., Matlab Image Processing Toolbox, Ver. 2.2 Natick, MA (1999)Google Scholar
  10. 10.
    Smith, A.R.: Color Gamut Transform Pair. Computer Graphics 12(3), 12–19 (1978)CrossRefGoogle Scholar
  11. 11.

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Emine Krichen
    • 1
  • Mohamed Chenafa
    • 1
  • Sonia Garcia-Salicetti
    • 1
  • Bernadette Dorizzi
    • 1
  1. 1.Institut National des Télécommunications, 9 Rue Charles Fourier 91160 EvryFrance

Personalised recommendations