Biogenetic Outline. The basal, central building block for any biosynthesis of terpenoids (isoprenoids), isopentenyl diphosphate, may be generated in plants by two different pathways, the cytosolic mevalonate and the plastidic methylerythritol (deoxyxylulose) pathways. The cytosolic pathway was assumed to provide the precursors for sesquiterpenoids and triterpenoids/steroids, the plastidic one for mono-, di-, and tetraterpenoids. However, it has been proven recently that this strict separation of both pathways does not exist. Cross-talk between both path-ways has been discovered (De-Eknamkul and Potduang 2003; Bartram et al. 2006 and references therein). The transformation of isopentenyl diphosphate to dimethylallyl diphosphate is catalyzed by a corresponding isomerase. A condensation of both isomers catalyzed by a plastidic prenyltransferase leads to the common precursor of all monoterpenoids (C10), geranyl diphosphate (“head-to-tail” condensation). Condensation of geranyl diphosphate and another isopentenyl diphosphate generates farnesyl diphosphate (C15), the common precursor of all sesquiterpenoids. Farnesyl diphosphate in turn acts as a prenyl donor for isopentenyl diphosphate to form geranylgeranyl diphosphate (C20), the common precursor of all diterpenoids. In contrast to all these “head-to-tail” condensations, “head-to-head” condensation of two molecules of farnesyl diphosphate is responsible for the formation of squalene (C30), the common precursor of all triterpenoids. The analogous reaction of two molecules of geranylgeranyl diphosphate yields phytoene (C40), the common precursor of all tetraterpenoids. Almost all of these precursors are generated as all-trans isoprenoids (exception: phytoene is yielded predominantly in the 15-cis configurated form). Nevertheless, they may change their configuration in the course of specific pathways leading to certain secondary metabolites.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abdel-Gwad MM, El-Amin SM, El-Sayed MM, Refahy LA, Sabry WA (1997) Molluscidal saponins from Cestrum parqui. Al-Azar J Pharmaceut Sci 20:80–84Google Scholar
  2. Abe F, Nagafuji S, Okawa M, Kinjo J (2006) Trypanocidal constituents in plants 6. Minor withanolides from the aerial parts of Physalis angulata. Chem Pharm Bull 54:1226–1228PubMedGoogle Scholar
  3. Abou-Douh AM (2002) New withanolides and other constituents from the fruits of Withania somnifera. Arch Pharm Pharm Med Chem 6:267–276Google Scholar
  4. Aburjai T, Bernasconi S, Manzocchi L, Pelizzoni F (1996) Isolation of 7-dehydrocholesterol from cell cultures of Solanum malacoxylon. Phytochemistry 43:773–776Google Scholar
  5. Aburjai T, Al-Khalil S, Abuirjeie M (1998) Vitamin D3 and its metabolites in tomato, potato, egg plant and zucchini leaves. Phytochemistry 49:2497–2499Google Scholar
  6. Adam G, Chiên NQ, Khôi NH (1981) Dunawithanin A and B, first plant withanolide glycosides from Dunalia australis. Int Conf Chem Biotechnol Biol Act Nat Prod [Proc] 1st / 3. Bulg Acad Sci, Sofia, Bulgaria, pp 191–195Google Scholar
  7. Adam G, Chiên NQ, Khôi NH (1984) Dunawithanins A and B, the first withanolide glycosides from Dunalia australis. Phytochemistry 23:2293–2297Google Scholar
  8. Adesina SK (1985) Constituents of Solanum dasyphyllum fruit. J Nat Prod 48:147Google Scholar
  9. Agra M de F, Bhattacharyya J (1999) Ethnomedicinal and phytochemical investigation of the Solanum species in the Northeast of Brazil. In: Nee M, Symon D, Lester RN, Jessop JP (eds) Solanaceae IV – Advances in taxonomy and utilization, Royal Botanic Gardens, Kew, UK, pp 341–343Google Scholar
  10. Ahmad VU, Baqai FT, Fatima I, Ahmad R (1991) A spirostanol glycoside from Cestrum diurnum. Phytochemistry 34:511–515Google Scholar
  11. Ahmad VU, Baqai FT, Ahmad R (1993) A tigogenin pentasaccharide from Cestrum nocturnum. Phytochemistry 30:3057–3061Google Scholar
  12. Ahmad VU, Baqai FT, Ahmad R (1995) A diosgenin tetrasaccharide from Cestrum nocturnum. Z Naturforsch 50b:1104–1110Google Scholar
  13. Ahmed AH, Ramzy MR (1997) Laboratory assessment of the molluscidal and cercaricidal activities of the Egyptian weed, Solanum nigrum L. Ann Trop Med Parasit 91:931938Google Scholar
  14. Al-Babili S, Hugueney P, Schledz M, Welsch R, Frohnmeyer H, Laule O, Beyer P (2000) Identification of a novel gene coding for neoxanthin synthase from Solanum tuberosum. FEBS Lett 485:168–172PubMedGoogle Scholar
  15. Almeida LB, Penteado MVC (1988) Carotenoids and pro-vitamin A value of white fleshed Brazilian sweet potatoes (Ipomoea batatas LAM.) J Food Compos Anal 1:341–352Google Scholar
  16. Alves AC, Prista LN, Ferreira MA (1961) Isolation of a glycoside from Solanum wrightii. Garcia de Orta 9:713–720Google Scholar
  17. Alzerreca A, Hart G (1982) Molluscicidal steroid glycoalkaloids possessing stereoisomeric spirosolane structures. Toxicol Lett 12:151–155PubMedGoogle Scholar
  18. Anjaneyulu ASR, Rao DS, Lequesno PW (1998) Withanolides, biologically active natural steroidal lactones: A review. In: Atta-ur-Rahman (ed) Studies in natural products chemistry, vol 20 (part F). Elsevier, Amsterdam, NL, pp 135–261Google Scholar
  19. Antonious GF, Kochhar TS (2003) Zingiberene and curcumene in wild tomato. J Envir Sci Health B38:489–500Google Scholar
  20. Armer CA (2004) Colorado potato beetle toxins revisited: Evidence the beetle does not sequester host plant glycoalkaloids. J Chem Ecol 30:883–888PubMedGoogle Scholar
  21. Arthan D, Svasti J, Kittakoop P, Pittayakhachonwut D, Tanticharoen M, Thebtaranonth Y (2002) Antiviral isoflavonoid sulfate and steroidal glycosides from the fruits of Solanum torvum. Phytochemistry 59:459–463PubMedGoogle Scholar
  22. Arthan D, Kittakoop P, Esen A, Svasti J (2006) Furostanol glycoside 26-O-β-glucosidase from the leaves of Solanum torvum. Phytochemistry 67:27–33PubMedGoogle Scholar
  23. Atta-ur-Rahman, Yousaf M, Gul W, Qureshi S, Choudhary MI, Voelter W, Hoff A, Jens F, Naz A (1998a) Five new withanolides from Withania coagulans. Heterocycles 48:1801–1811Google Scholar
  24. Atta-ur-Rahman, Choudhary MI, Yousaf M, Gul W, Qureshi S (1998b) New withanolides from Withania coagulans. Chem Pharm Bull 46:1853–1856Google Scholar
  25. Atta-ur-Rahman, Shabbir M, Yousaf M, Qureshi S, E-Shahwar D, Naz A, Choudhary MI (1999) Three withanolides from Withania coagulans. Phytochemistry 52:1361–1364Google Scholar
  26. Atta-ur-Rahman, Dur-e-Shahwar D, Naz A, Choudhary MI (2003) Withanolides from Withania coagulans. Phytochemistry 63:387–390Google Scholar
  27. Austin DF (2004) Florida Ethnobotany. CRC Press, Boca Raton, FL, USAGoogle Scholar
  28. Baccarini A, Bertossi F, Bagni N (1965) Carotenoid pigments in the stem of Cuscuta australis. Phytochemistry 4:349–351Google Scholar
  29. Baggesgaard-Rasmussen H, Boll PM (1962) Soladulcamarine, the alkaloidal glycoside of Solanum dulcamara. Acta Chem Scand 12:802–806Google Scholar
  30. Bah M, Gutiérrez DM, Escobedo C, Mendoza S, Rojas JI, Rojas A (2004) Methylprotodioscin from the Mexican medical plant Solanum rostratum (Solanaceae). Biochem Syst Ecol 32:197–202Google Scholar
  31. Bajguz A, Tretyn A (2003) The chemical characteristic and distribution of brassinosteroids in plants. Phytochemistry 62:1027–1046PubMedGoogle Scholar
  32. Balashova IT, Verderevskaya TD, Kintya PK (1984) Antiviral activity of steroid glycosides on a model of tobacco mosaic virus (TMV). Sel’skokhozyaistvennaya Biol 83–86Google Scholar
  33. Balmannya (1874) Versuche über die Wirkung des Solanins und Solanidins. Göttingen; fide Husemann et al. (1884)Google Scholar
  34. Baqai FT, Ali A, Ahmad VU (2001) Two new spirostanol glycosides from Cestrum parqui. Helv Chim Acta 84:3350–3356Google Scholar
  35. Barger LG, Fraenkel-Conrat HL (1936) Alkaloids from Solanum pseudocapsicum. J Chem Soc 1537–1542Google Scholar
  36. Bartram S, Jux A, Gleixner G, Boland W (2006) Dynamic pathway allocation in early terpenoid biosynthesis of stress-induced lima beans leaves. Phytochemistry 67:1661–1672PubMedGoogle Scholar
  37. Baup M (1826) Extrait d’une lettre sur plusieurs nouvelles substances. Ann Chim Phys 31:108–109Google Scholar
  38. Begley MJ, Crombie L, Ham PJ, Whiting DA (1976) A new class of natural steroids, with ring D aromatic, from Nicandra physaloides (Solanaceae). X-Ray analysis of nic-10, and the structures of nic-1 (‘nicandrenone’), -12, and -17. J Chem Soc Perkin I:304–307Google Scholar
  39. Bennett RD, Lieber ER, Heftmann E (1967) Biosynthesis of neotigogenin and ∆16-5α-pregnen-3β-ol-20-one from cholesterol in Lycopersicon pimpinellifolium. Phytochemistry 6:837–840Google Scholar
  40. Bergenstraahle A, Borgaa P, Jonsson LMV (1996) Sterol composition and synthesis in potato tuber disks in relation to glycoalkaloid synthesis. Phytochemistry 41:155–161Google Scholar
  41. Bhatnagar JK, Puri RK (1974) Solanum platanifolium, a new source of solasodine. Lloydia (later: J Nat Prod) 37:318–319Google Scholar
  42. Bheemasankara Rao C, Suseela K, Subba Rao PV, Gopala Krishna P, Subba Raju GV (1984) Chemical examination of some Indian medicinal plants. Indian J Chem 23B:787–788Google Scholar
  43. Bianchi E, Girardi F, Diaz F, Sandoval R, Gonzales M (1963) Components of the leaves and fruit of Cestrum parqui: Tigogenin, digalogenin, digitogenin, and ursolic acid. I. Ann Chim (Rome) 53:1761–1778Google Scholar
  44. Birch AJ, Massy-Westropp RA, Wright SE, Kubota T, Matsuura T, Sutherland MD (1954) Ipomeamarone and ngaione. Chem Ind (London) 902Google Scholar
  45. Bishop GJ, Nomura T, Yokota T, Harrison K, Noguchi T, Fujioka S, Takatsuto S, Jones JDG, Kamiya Y (1999) The tomato DWARF enzyme catalyzes C-6-oxidation in brassinosteroid biosynthesis. Proc Natl Acad Sci USA 96:1761–1766PubMedGoogle Scholar
  46. Bite P, Shabana MM (1972) Solanum glycosides. VIII. Solashabanine and solaradinine. Acta Chim Acad Sci Hung 73:361–362Google Scholar
  47. Bizimenyera ES (2003) Acute poisoning of Friesian heifers by Solanum macrocarpon L. ssp. dasyphyllum. Vet Hum Toxicol 45:222–223PubMedGoogle Scholar
  48. Bloch CB, De Wit PJGM, Kuc J (1984) Elicitation of phytoalexins by arachidonic and eicosapentaenoic acids: a host survey. Physiol Plant Pathol 25:199–208Google Scholar
  49. Bohlmann F, Zdero C (1978) New sesquiterpenes and acetylenes from Athanasia and Pentzia species. Phytochemistry 17:1595–1599Google Scholar
  50. Bohlmann J, Stauber EJ, Krock B, Oldham NJ, Gershenzon J, Baldwin IT (2002) Gene expression of 5-epi-aristolochene synthase and formation of capsidiol in roots of Nicotiana attenuata and N. sylvestris. Phytochemistry 60:109–116PubMedGoogle Scholar
  51. Böhm A, Jenett-Siems K, Kaloga M, Witte L, Eich E (1999) Bonaseminols, a novel type of benzofurans from Bonamia semidigyna (Convolvulaceae). Book of abstracts: Joint Meeting of American Society of Pharmacognosy, Association Française pour l’Enseignement et la Recherche en Pharmacognosie, Gesellschaft für Arzneipflanzenforschung, Phytochemical Society of Europe, July 26–30, 1999. Leiden University, Division of Pharmacognosy, P 222Google Scholar
  52. Bohs L (2006) The genus Solanum: views from the trees and the roots. Presentation, VI International Solanaceae Conference, Solanaceae Genomics Network, and 90th Annual Meeting of the Potato Association of America, Madison, Wisconsin, USAGoogle Scholar
  53. Bohs L, Olmstead RG (1997) Phylogenetic relationships in Solanum (Solanaceae) based on ndhF sequences. Syst Bot 22:5–17Google Scholar
  54. Boland RL (1986) Plants as source if vitamin D3 metabolites. Nutr Rev 44:1–8PubMedGoogle Scholar
  55. Boland RL, Skliar MI, Norman AW (1987) Isolation of vitamin D3 metabolites from Solanum malacoxylon leaf extracts incubated with ruminal fluid. Planta Med 53:161–164PubMedGoogle Scholar
  56. Boland RL, Skliar MI, Curino A, Milanesi L (2003) Vitamin D compounds in plants. Plant Sci 164:357–369Google Scholar
  57. Boll P, Andersen B (1962) Alkaloidal glycosides from Solanum dulcamara III. Differentiation of geographical strains by means of thin-layer chromatography. Planta Med. 10:421–432Google Scholar
  58. Bolt AJN, Purkis SW, Sadd JS (1983) A damascenone derivative from Nicotiana tabacum. Phytochemistry 22:613–614Google Scholar
  59. Boyd MR, Wilson BJ (1972) Isolation and characterization of 4-ipomeanol, a lung-toxic furanosesquiterpenoid produced by sweet potatoes (Ipomoea batatas). J Agric Food Chem 20:428–430PubMedGoogle Scholar
  60. Bramley PM (1997) Isoprenoid metabolism. In: Dey PM, Harborne JB (eds) Plant biochemistry. Academic Press, San Diego, USA, pp 417–437Google Scholar
  61. Breitenbach J, Sandmann G (2005) ζ-Carotene cis isomers as products and substrates in the plant poly-cis carotenoids biosynthetic pathway to lycopene. Planta 220:785–793PubMedGoogle Scholar
  62. Breyer-Brandwijk MG (1929) Bull Sci Pharmacol 36:541; fide Prelog & Jeger (1953)Google Scholar
  63. Briggs LH, Brooker EG, Harvey WE, Odell AL (1952) Solanum alkaloids. VIII. Solamargine, a new alkaloid from Solanum marginatum. J Soc Chem 3587–3591Google Scholar
  64. Briggs LH, Cambie RC, Hoare JL (1961) Solanum alkaloids. XV. Constituents of some Solanum species and a reassessment of solasodamine and solauricine. J Chem Soc 4645–4649Google Scholar
  65. Britton G, Liaaen-Jensen S, Pfander H, Mercadante AZ, Egeland ES (2004) Carotenoids – Handbook. Birkhäuser Verlag, Basel, CHGoogle Scholar
  66. Brown CR (2005) Antioxidants in potato. Am J Potato Res 82:163–172Google Scholar
  67. Brown GD (1994) The sesquiterpenes of Fabiana imbricata. Phytochemistry 35:425–433Google Scholar
  68. Bukenya ZR, Carasco JF (1999) Ethnobotanical aspects of Solanum L. (Solanaceae) in Uganda. In: Nee M, Symon D, Lester RN, Jessop JP (eds) Solanaceae IV – Advances in taxonomy and utilization, Royal Botanic Gardens, Kew, UK, pp 345–360Google Scholar
  69. Burden RS, Rowell PM, Bailey JA, Loeffler RST, Kemp MS, Brown CA (1985) Debneyol, a fungicidal sesquiterpene from TNV infected Nicotiana debneyi. Phytochemistry 24:2191–2194Google Scholar
  70. Burden RS, Loeffler RST, Rowell PM, Bailey JA, Kemp MS (1986) Cyclodebneyol, a fungitoxic sesquiterpene from TNV infected Nicotiana debneyi. Phytochemistry 25:1607–1608Google Scholar
  71. Burka LT, Kuhnert L, Wilson BJ, Harris TM (1974) 4-Hydroxymyoporone, a key intermediate in the biosynthesis of pulmonary toxins produced by Fusarium solani infected sweet potatoes. Tetrahedron Lett 4017–4020Google Scholar
  72. Burka LT, Kuhnert L, Wilson BJ, Harris TM (1977) Biogenesis of lung-toxic furans produced during microbial infection of sweet potatoes (Ipomoea batatas). J Am Chem Soc 99:2302–2305PubMedGoogle Scholar
  73. Burka LT, Felice LJ, Jackson SW (1981) 6-Oxodendrolasin, 6-hydroxydendrolasin, 9-oxofarnesol and 9-hydroxyfarnesol, stress metabolites of the sweet potato. Phytochemistry 20:647–652Google Scholar
  74. Burns J, Fraser PD, Bramley PM (2003) Identification and quantification of carotenoids, tocopherols and chlorophylls in commonly consumed fruits and vegetables. Phytochemistry 62:939–947PubMedGoogle Scholar
  75. Buttery RG, Ling LC (1993) Volatile components of tomato fruit and plant parts: Relationship and biogenesis. ACS Sympos Ser No 525, American Chemical Society, Washington, DC, pp 23–34Google Scholar
  76. Callow RK, James VHT (1955) Epimerisation at C(25) of steroid sapogenins: Sarsasapogenin, neotigogenin, and sisalagenin. J Chem Soc. 1671–1674Google Scholar
  77. Canham PAS, Warren FL (1950a) Saponins.- I. Isolation of gitogenin and digitonin from Cestrum laevigatum. J South African Chem Inst 3:9–12Google Scholar
  78. Canham PAS, Warren FL (1950b) Saponins.- II. Isolation of gitogenin and digitogenin from Cestrum parqui. J South African Chem Inst 3:63–65Google Scholar
  79. Canonica L, Danieli B, Weisz-Vincze I, Ferrari G (1972) Structure of muristerone A, a new phytoecdysone. J Chem Soc, Chem Comm:1060–1061Google Scholar
  80. Canonica L, Danieli B, Ferrari G, Krepinsky J, Rainoldi G (1973) Structure of calonysterone, an unsusually modified phytoecdysone. J Chem Soc, Chem Comm:737–738Google Scholar
  81. Canonica L, Danieli B, Ferrari G, Krepinsky J, Weisz-Vincze I (1975) A novel method of isolation of phytoecdysones from kaladana seeds. Phytochemistry 14:525–527Google Scholar
  82. Canonica L, Orsini F, Pelizzoni F, Ferrari G, Vecchietti V (1976) Aureoside, a new glycoside from Operculina aurea (Convolvulaceae). Gazz Chim Ital 106:889–894Google Scholar
  83. Canonica L, Pelizzoni F, Ferrari G, Vecchietti V (1977a) Glycosides from Operculina aurea (Convolvulaceae). Isoaureoside and aniseoside. Gazz Chim Ital 107:223–227Google Scholar
  84. Canonica L, Orsini F, Pelizzoni F, Zajotti A, Ferrari G, Vecchietti V (1977b) Glycosides from Operculina aurea (Convolvulaceae). III. New derivatives of ent-3α, 16α 17- and ent-3β, 16β, 17-kauranetriols. Gazz Chim Ital 107:501–502Google Scholar
  85. Canonica L, Danieli B, Ferrari G, Krepinsky J, Haimova M (1977c) New phytoecdysones from kaladana. Structure of muristerone A and kaladasterone. Gazz Chim Ital 107:123–130Google Scholar
  86. Cardeal ZL, Gomes da Silva MDR, Marriott PJ (2006) Comprehensive two-dimensional gas chromatography/mass spectrometric analysis of pepper volatiles. Rapid Commun Mass Spectrom 20:2823–2836PubMedGoogle Scholar
  87. Carter CD, Gianfagna TJ, Sacalis JN (1989) Sesquiterpenes in glandular trichomes of a wild tomato species and toxicity to the Colorado potato beetle. J Agric Food Chem 37:1425–1428Google Scholar
  88. Chakravarty AK, Dhar TK, Pakrashi SC (1978) Hispigenin, a novel 22βO-spirostane from Solanum hispidum. Tetrahedron Lett 19:3875–3878Google Scholar
  89. Chakravarty AK, Saha CR, Pakrashi SC (1979) New spirostane saponins and sapogenins from Solanum hispidum seeds. Phytochemistry 18:902–903Google Scholar
  90. Chakravarty AK, Dhar TK, Pakrashi SC (1980) Solaspigenin and neosolaspigenin, two new spirostane sapogenins from Solanum hispidum. Phytochemistry 19:1249–1251Google Scholar
  91. Chakravarty AK, Mukhopadhyay S, Saha S, Pakrashi SC (1996) A neolignan and sterols in fruits of Solanum sisymbrifolium. Phytochemistry 41:935–939Google Scholar
  92. Cham BE (2000) Anticancer medicinal compositions comprising solasodine glycosides. PCT Int Appl: 51 ppGoogle Scholar
  93. Cham BE, Meares HM (1987) Glycoalkaloids from Solanum sodomaeum are effective in the treatment of skin cancers in man. Cancer Lett 36:111–118PubMedGoogle Scholar
  94. Cham BE, Gilliver M, Wilson L (1987) Antitumour effects of glycoalkaloids isolated from Solanum sodomaeum. Planta Med 53:34–36PubMedGoogle Scholar
  95. Chamberlain WJ, Schlotzhauer WS, Chortyk OT (1988). Chemical composition of non-smoking tobacco products. J Agric Food Chem 36:48–50Google Scholar
  96. Chamy MC, Garbarino JA, Piovano M, López-Pérez JL, Nicoletti M, Gandolfo R, San Feliciano A (1997) 9-epi-Labdane diterpenoids from Nolana rostrata var. rostrata. Phytochemistry 45:797–800Google Scholar
  97. Chamy MC, Piovano M, Garbarino JA (2002) Diterpenoids from Nolana elegans. Bol Soc Chil Quim 47:367–370Google Scholar
  98. Chen BH, Yang SH, Han LH (1991) Characterization of major carotenoids in water convolvulus (Ipomoea aquatica) by open-column, thin-layer and high-performance liquid chromatography. J Chromatogr 543:147–155Google Scholar
  99. Chen LJ, DeRose EF, Burka LT (2006) Metabolism of furans in vitro: Ipomeanine and 4-ipomeanol. Chem Res Toxicol 19:1320–1329PubMedGoogle Scholar
  100. Chintea P, Buliga A, Mihaila M, Oprea M (1998) Effectiveness of some extracts of natural products in controlling pathogenic soil-borne fungi. Practice Oriented Results on Use and Production of Neem-Ingredients and Pheromones VIII, Proceedings of the Workshop, 8th, Hohensolms, Germany, Feb 16–18, pp 107–115Google Scholar
  101. Choban IN, Dimoglo AS, Bersuker IB, Balashova IT, Kintya PK (1987) Structure-activity correlations for antiviral properties of steroidal glycosides. FECS Int Conf Chem Biotechnol Biol Act Nat Prod (Proc), 3rd. VCH, Weinheim, Germany, pp 431–435Google Scholar
  102. Choi JK, Murillo G, Su BN, Pezzuto JM, Kinghorn AD, Mehta RG (2006) Ixocarpalactone A isolated from the Mexican tomatillo shows potent antiproliferative and apoptotic activity in colon cancer cells. FEBS J 273:5714–5723PubMedGoogle Scholar
  103. Choudhary MI, Yousuf S, Nawaz SA, Ahmed S, Atta-ur-Rahman (2004) New cholinesterase inhibiting withanolides from Withania somnifera. Chem Pharm Bull 52:1358–1361PubMedGoogle Scholar
  104. Choudhary MI, Nawaz SA, Haq ZuH, Lodhi MA, Ghayur MN, Jalil S, Riaz N, Yousuf S, Malik A, Gilani AH, Atta-ur-Rahman (2005) Withanolides, a new class of natural cholinesterase inhibitors with calcium antagonistic properties. Biochem Biophys Res Commun 334:276–287PubMedGoogle Scholar
  105. Choudhary MI, Yousuf S, Samreen, Shah SAA, Ahmed S, Atta-ur-Rahman (2006) Biotransformation of physalin H and leishmanicidal activity of its transformed products. Chem Pharm Bull 54:927–930PubMedGoogle Scholar
  106. Christen P (1989) Withanolide – Naturstoffe mit vielversprechendem Wirkungsspektrum. Pharmazie in unserer Zeit 18:129–139PubMedGoogle Scholar
  107. Cirigliano AM, Veleiro AS, Oberti JC, Burton G (2002) Spiranoid withanolides from Jaborosa odenelliana. J Nat Prod 65:1049–1951PubMedGoogle Scholar
  108. Coelho RM, De Souza MC, Sarragiotto MH (1998) Steroidal alkaloid glycosides from Solanum orbignianum. Phytochemistry 49:893–897PubMedGoogle Scholar
  109. Colombano A (1908) On the solanine of the potato plant. Gazz Chim Ital 38:19–37Google Scholar
  110. Coune C (1977) Etude phytochimique des Solanaceae d’Afrique Centrale. II. Les alcaloïdes de Solanum dasyphyllum. Planta Med 31:259–261PubMedGoogle Scholar
  111. Coune C, Denoel A (1975) Phytochemical study of the Central African Solanaceae. I. Alkaloids of Solanum dasyphyllum. Planta Med 28:168–171PubMedGoogle Scholar
  112. Coy-Barrera CA, Cuca-Suarez LE, Clara IOP (2005) A new steroidal alkaloid, two sterols and a pentacyclic triterpenoid isolated from Solanum cornifolium, section Geminata. Actualidades Biologicas (Medellin, Colombia) 27:131–134Google Scholar
  113. Craig LC, Jacobs WA (1943) Veratrine alkaloids. XX. Further correlations in the veratrine group. The relationship between the veratrine bases and solanidine. J Biol Chem 149:451–464Google Scholar
  114. Cuervo AC, Blunden G, Patel AV (1991) Chlorogenone and neochlorogenone from the unripe fruits of Solanum torvum SWARTZ. Phytochemistry 30: 1339–1341Google Scholar
  115. Curl AL (1964) The carotenoids of green bell peppers. J Agric Food Chem 12:522–524Google Scholar
  116. Czapek F (1925) Biochemie der Pflanzen, vol 3. Verlag von Gustav Fischer, Jena, GermanyGoogle Scholar
  117. D’Abrosca B, DellaGreca M, Fiorentino A, Monaco P, Oriano P, Temussi F (2004) Structure elucidation and phytotoxicity of C13 nor-isoprenoids from Cestrum parqui. Phytochemistry 65:497–505PubMedGoogle Scholar
  118. D’Abrosca B, DellaGreca M, Fiorentino A, Monaco P, Natale A, Oriano P, Zarrelli A (2005) Structural characterization of phytotoxic of terpenoids from Cestrum parqui. Phytochemistry 66:2681–2688PubMedGoogle Scholar
  119. Darwin SC, Knapp S, Peralta IE (2003) Taxonomy of tomatoes in the Galápagos Islands: Native and introduced species of Solanum section Lycopersicon (Solanaceae). Syst Biodivers 1:29–53Google Scholar
  120. Das S, Ganguly SN, Mukherjee KK (1999) Fatty acids and phytochemical components of Ipomoea spp. seeds. Nat Prod Sci 5:121–123Google Scholar
  121. Daunay MC, Lester RN, Gebhardt C, Hennart JW, Jahn M, Frary A, Doganlar S (2001) Genetic resources of eggplant (Solanum melongena L.) and allied species: a new challenge for molecular geneticists and eggplant breeders. In: Van den Berg RG, Barendse GWM, van der Weerden GM, Mariani C (eds) Solanaceae V – advances in taxonomy and utilization. Nijmegen University Press, Nijmegen, The Netherlands, pp 251–274Google Scholar
  122. Daunter B, Cham BE (1990) Solasodine glycosides. In vitro preferential cytotoxicity for human cancer cells. Cancer Lett 55:209–220PubMedGoogle Scholar
  123. Davies BH, Matthews S, Kirk JTO (1970) The nature and biosynthesis of the carotenoids of different colour varieties of Capsicum annuum. Phytochemistry 9:797–805Google Scholar
  124. De Cassia Meneses Oliveira R, Lima JT, Ribeiro LAA, Silva JLV, Monteiro FS, Assis TS, Agra M de F, Silva TMS, Almeida FRC, Silva BA (2006) Spasmolytic action of the methanol extract and isojuripidine from Solanum asterophorum MART. (Solanaceae) leaves in guinea-pig ileum. Z Naturforsch 61c:799–805Google Scholar
  125. De-Eknamkul W, Potduang B (2003) Biosynthesis of β-sitosterol and stigmasterol in Croton sublyratus proceeds via a mixed origin of isoprene units. Phytochemistry 62:389–398PubMedGoogle Scholar
  126. De Lucca AJ, Bland JM, Vigo CB, Cushion M, Selitrennikoff CP, Peter J, Walsh TJ (2002) CAY-1, a fungicidal saponin from Capsicum sp. fruit. Med Mycol 40:131–137PubMedGoogle Scholar
  127. De Lucca AJ, Bland JM, Boue S, Vigo CB, Cleveland TE (2006) Synergism of CAY-1 with amphotericin B and itraconazole. Microbiology 52:285–287Google Scholar
  128. De Marino S, Borbone N, Gala F, Zollo F, Fico G, Pagiotti R, Iorizzi M (2006) New constituents of sweet Capsicum annuum L. fruits and evaluation of their biological activity. J Agric Food Chem 54:7508–7516PubMedGoogle Scholar
  129. De Valeri B, Usubillaga A (1989) Sapogenins from Solanum meridense. Phytochemistry 28:2509–2511Google Scholar
  130. Desfosses M (1820) Extrait d’une lettre. J Pharm 6:374–376Google Scholar
  131. Desfosses M (1821) Extrait d’une lettre. J Pharm 7:414–417Google Scholar
  132. Desjardins AE, Mccormick SP, Corsini DL (1995) Diversity of sesquiterpenes in 46 potato cultivars and breeding selections. J Agric Food Chem 43:2267–2272Google Scholar
  133. Dewick PM (1999) The biosynthesis of C5 – C25 terpenoid compounds. Nat Prod Rep 16:97–130Google Scholar
  134. Dimitriades E, Massy-Westropp RA (1984) The configuration of the sesquiterpenoid 4-hydroxymyoporone (athanagrandione). Phytochemistry 23:1325–1326Google Scholar
  135. Dimoglo AS, Choban IN, Bersuker IB, Kintya PK, Balashova NN (1985) Structure-activity correlations for the antioxidant and antifungal properties of steroid glycosides. Bioorg Khim 11:408–413PubMedGoogle Scholar
  136. Dominguez XA, Marroquin J, Coronado MM (1975) Ursolic acid and mannitol from Leptoglossis texana. Rev Latinoameric Quim 6:104Google Scholar
  137. Döpke W, Sewerin E, Hess U, Nogueiras C (1976) Struktur und Stereochemie eines neuen Steroidsapogenins vom Spirostanoltyp aus Solanum jamaicense. Z Chem 16:104–105Google Scholar
  138. Döpke W, Matos N, Duday S (1987) Über den Steroidalkaloid- und Sapogenin-Gehalt von Solanum panduraeforme E.MEY. Pharmazie 42:621–622Google Scholar
  139. Dragendorff G (1868) Die gerichtlich-chemische Ermittelung von Giften in Nahrungsmitteln, Luftgemischen, Speiseresten, Körpertheilen etc. Verlag der Kaiserlichen Hofbuchhandlung H. Schmitzdorff, St. Petersburg, Russia, pp 314–317Google Scholar
  140. Duke SO, Baerson SR, Dayan FE, Rimando AM, Scheffler BE, Tellez MR, Wedge DE, Schrader KK, Akey DH, Arthur FH, de Lucca AJ, Gibson DM, Harrison HF Jr, Peterson JK, Gealy DR, Tworkoski T, Wilson CL, Morris JB (2003) United States Department of Agriculture – Agricultural Research Service research on natural products for pest management. Pest Manag Sci 59:708–717PubMedGoogle Scholar
  141. Duperon R, Thiersault M, Duperon P (1984) High level of glycosylated sterols in species of Solanum and sterol changes during the development of the tomato. Phytochemistry 23:743–746Google Scholar
  142. Edwards EJ, Saint RE, Cobb AH (1998) Is there a link between greening and light-enhanced glycoalkaloid accumulation in potato (Solanum tuberosum L.) tubers ? J Sci Food Agric 76:327–333Google Scholar
  143. Ehmke A, Eilert U (1993) Solanum dulcamara L. (Bittersweet): Accumulation of steroidal alkaloids in the plant and in different in vitro systems. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 21, medicinal and aromatic plants IV, Springer Verlag, Berlin, Germany, pp 339–352Google Scholar
  144. El Imam YMA, Evans WC (1984) Tropane alkaloids of species of Anthocercis, Cyphanthera and Crenidium. Planta Med 50:86–87PubMedGoogle Scholar
  145. El Imam YMA, Evans WC, Haegi L, Ramsey KPA (1991) Secondary metabolites of intergeneric hybrids of the Anthocercideae, family Solanaceae. Int J Pharmacog 29:263–267Google Scholar
  146. El Kheir YM, Salih MH (1979) Investigation of the alkaloidal content of Solanum dubium L. growing in Sudan. Fitoterapia 50:255–258Google Scholar
  147. Elliger CA, Waiss AC Jr (1989) Insect growth inhibitors from Petunia and other solanaceous plants. ACS Sympos Ser No 387, American Chemical Society, Washington, DC, pp 188–205Google Scholar
  148. Elliger CA, Waiss AC Jr (1991) Insect resistance factors in Petunia. In: Hedin PA (ed) Naturally Occurring Pest Bioregulators. ACS Sympos Ser No 449, American Chemical Society, Washington, DC, pp 210–223Google Scholar
  149. Elliger CA, Benson M, Haddon WF, Lundin RE, Waiss AC Jr, Wong RY (1988a) Petuniasterones, novel ergostane-type steroids of Petunia hybrida VILM. (Solanaceae) having insect-inhibitory activity. X-ray molecular structure of the 22, 24, 25-[(methoxycarbonyl) orthoacetate] of 7α, 22, 24, 25-tetrahydroxyergosta-1, 4-dien-3-one and of 1α-acetoxy-24, 25-epoxy-7α-hydroxy-22-(methylthiocarbonyl) acetoxyergost-4-en-3-one. J Chem Soc, Perkin Transact I:711–717Google Scholar
  150. Elliger CA, Benson M, Lundin RE, Waiss AC Jr (1988b) Minor petuniasterones from Petunia hybrida. Phytochemistry 27:3597–3603Google Scholar
  151. Elliger CA, Haddon WF, Waiss AC Jr, Benson M (1989a) Petuniasterone N, an unusual ergostanoid from Petunia species. J Nat Prod 52:576–580Google Scholar
  152. Elliger CA, Wong RY, Benson M, Waiss AC Jr (1989b) X-ray crystal structure of petuniasterone O, a novel ergostanoid from Petunia parodii. J Nat Prod 52:1345–1349Google Scholar
  153. Elliger CA, Waiss AC Jr, Benson M, Wong RY (1990) Ergostanoids from Petunia parodii. Phytochemistry 29:2853–2863Google Scholar
  154. Elliger CA, Waiss AC Jr, Benson M (1992) Petuniasterone R, a new ergostanoids from Petunia parodii. J Nat Prod 55:129–133Google Scholar
  155. Elliger CA, Waiss AC Jr, Benson M, Wong RY (1993) Ergostanoids from Petunia inflata. Phytochemistry 33:471–477Google Scholar
  156. Enzell CR, Wahlberg I, Aasen AJ (1977) Isoprenoids and alkaloids of tobacco. In: Zechmeister L, Herz W, Grisebach H, Kirby GW (eds) Progress in the chemistry of organic natural products, vol 34. Springer Verlag, Wien/A, pp 1–79Google Scholar
  157. Esteves-Souza A, Sarmento da Silva TM, Alves CCF, de Carvalho MG, Braz-Filho R, Echevarria A (2002) Cytotoxic activities against Ehrlich carcinoma and human K562 leukemia of alkaloids and flavonoid from two Solanum species. J Brazil Chem Soc 13:838–842Google Scholar
  158. Faini F, Torres R, Delle Monache F, Martini-Bettolo GB, Castillo M (1980) 1-Acetyl-3-carboxy-β-carboline, a new acid and other constituents of Vestia lycioides. Planta Med 38:128–132Google Scholar
  159. Faini F, Torres R, Castillo M (1984) (25R)-Isonuatigenin, an unusual steroidal sapogenin from Vestia lycioides. Phytochemistry 23:1301–1303Google Scholar
  160. Fajardo V, Freyer AJ, Minard RD, Shama M (1987) (+)-Jaborol, an unusual phenolic withanolide from Jaborosa magellanica. Tetrahedron 43:3875–3880Google Scholar
  161. Fakhrutdinova IM, Sidyakin GP, Yunusov SY (1965) Alkaloids from Haplophyllum robustum. Structure of robustine, Khim Prirodn Soedin, Akad Nauk Uz SSR 107–109Google Scholar
  162. Fang L, Chai HB, Castillo JJ, Soejarto DD, Farnsworth NR, Cordell GA, Pezzuto JM, Kinghorn AD (2003) Cytotoxic constituents of Brachistus stramoniifolius. Phytother Res 17:520–523PubMedGoogle Scholar
  163. Farag MA, Paré PW (2002) C6-Green leaf volatiles trigger local and systemic VOC emissions in tomato. Phytochemistry 61:545–554PubMedGoogle Scholar
  164. Fayez MBE, Saleh AA (1967) Steroidal alkaloids of Solanum wrightii BENTH. Phytochemistry 6:433–436Google Scholar
  165. Ferreira F, Soulé S, Vazquez A, Moyna P, Kenne L (1996) Steroid saponins from Solanum laxum. Phytochemistry 42:1409–1416PubMedGoogle Scholar
  166. Ferrer A, Ferrer G, Perez C, Coll F, Borrego J, Jomarron I, Anaya H, Fuentes V (1998) Schlechtendamine, a new steroid alkaloid from Solanum schlechtendalianum WALP. Revista Cubana de Quimica 10:3–9Google Scholar
  167. Ferro EA, Alvarenga NL, Ibarrola DA, Hellion-Ibarrola MC, Ravelo AG (2005) A new steroidal saponin from Solanum sisymbrifolium roots. Fitoterapia 76:577–579PubMedGoogle Scholar
  168. Fewell AM, Roddick JG (1997) Potato glycoalkaloid impairment of fungal development. Mycol Res 101:597–603Google Scholar
  169. Fewell AM, Roddick JG, Weissenberg M (1994) Interactions between the glycoalkaloids solasonine and solamargine in relation to inhibition of fungal growth. Phytochemistry 37:1007–1011PubMedGoogle Scholar
  170. Fôdéré, Hecht (before 1884) Ann Chem Pharm 3:130; fide Husemann et al. (1884)Google Scholar
  171. Fontaine TD, Irving GW Jr, Ma RM, Poole JB, Doolittle SP (1948) Isolation and partial characterization of crystalline tomatine, an antibiotic agent from the tomato plant. Arch Biochem 18:467–475PubMedGoogle Scholar
  172. Fontaine TD, Ard JS, Ma RM (1951) Tomatidine, a steroid secondary amine. J Am Chem Soc 73:878–879Google Scholar
  173. Franz C, Jatisatienr A (1983) Pflanzliche Steroid-Rohstoffe: Wird Solasodin das Diosgenin des nächsten Jahrzehnts? Dtsch Apoth Ztg 123:1069–1072Google Scholar
  174. Friedman M (2002) Tomato glycoalkaloids: Role in the plant and in the diet. J Agric Food Chem 50:5751–5780PubMedGoogle Scholar
  175. Friedman M (2006) Potato glycoalkaloids: Roles in the plant and in the diet. J Agric Food Chem 54:8655–8681PubMedGoogle Scholar
  176. Friedman M, McDonald GM (1997) Potato glycoalkaloids: chemistry, analysis, safety, and plant physiology. Critic Rev Plant Sci 16:55–132Google Scholar
  177. Friedman M, Kozukue N, Harden LA (1997) Structure of the tomato glycoalkaloid tomatidenol-3-β-lycotetraose (dehydrotomatine) J Agric Food Chem 45:1541–1547Google Scholar
  178. Friedman M, Lee KR, Kim HJ, Lee IS, Kozukue N (2005) Anticarcinogenic effects of glycoalkaloids from potatoes against human cervical, liver, lymphoma, and stomach cancer cells. J Agric Food Chem 53:6162–6169PubMedGoogle Scholar
  179. Fuchs A, Slobbe W, Mol PC, Posthumus MA (1983) GC/MS analysis of fungitoxic terpenoids from tobacco. Phytochemistry 22:1197–1199Google Scholar
  180. Fujita M, Yoshizawa T (1989) Induction of phytoalexins by various mycotoxins and metabolism of mycotoxins in sweet potato tissues. Shokuhin Eiseigaku Zasshi 30:501–505Google Scholar
  181. Fujiwara Y, Yahara S, Ikeda T, Ono M, Nohara T (2003) Cytotoxic major saponin from tomato fruits. Chem Pharm Bull 51:234–235PubMedGoogle Scholar
  182. Fujiwara Y, Takaki A, Uehara Y, Ikeda T, Okawa M, Yamauchi K, Ono M, Yoshimitsu H, Nohara T (2004) Tomato steroidal alkaloid glycosides, esculeosides A and B, from ripe fruits. Tetrahedron 60:4915–4920Google Scholar
  183. Fujiwara Y, Yoshizaki M, Matsushita S, Yahara S, Yae E, Ikeda T, Ono M, Nohara T (2005) A new tomato pregnane glycoside from the overripe fruits. Chem Pharm Bull 53:584–585PubMedGoogle Scholar
  184. Fukuhara K, Shimizu K, Kubo I (2004) Arudonine, an allelopathic steroidal glycoalkaloid from the root bark of Solanum arundo MATTEI. Phytochemistry 65:1283–1286PubMedGoogle Scholar
  185. Gaffield W, Keeler RF (1993) Implication of C-5, C-6-unsaturation as a key structural factor in steroidal alkaloid-induced mammalian teratogenesis. Experientia 49:922–924PubMedGoogle Scholar
  186. Gambaro V, Piovano M, Garbarino JA (1986) 9-Acetoxynerolidol from Phrodus bridgesii. Phytochemistry 25:739–740Google Scholar
  187. Gan KH, Lin CN (1997) A steroidal glycoside from Solanum pseudocapsicastrum. Chin Pharmac J (Taipei) 49:315–320Google Scholar
  188. Gan KH, Lin CN, Won SJ (1993) Cytotoxic principles and their derivatives of Formosan Solanum plants. J Nat Prod 56:15–21PubMedGoogle Scholar
  189. Garbarino JA, Chamy MC, Gambaro V (1986) Labdane diterpenoids from Nolana rostrata. Phytochemistry 25:2833–2836Google Scholar
  190. Garbarino JA, Chamy MC, Piovano M, Gambaro V (1988) Labdane diterpenoids from Nolana filifolia. Phytochemistry 27:1795–1796Google Scholar
  191. Garbarino JA, Chamy MC, Montagna MP, Gambaro V (1993) Sesquiterpenoids from Nolana coelestis. Phytochemistry 32:987–989Google Scholar
  192. Garcia Jiménez F, Pérezamador MC (1967) Corymbosin, a glucoside from Turbina corymbosa. Tetrahedron 23:2557–2561PubMedGoogle Scholar
  193. Garcia Jiménez F, Collera O, Larios G, Taboada J, Pérezamador MC (1979) Revision of the structure of turbicorytin and corymbositin. Rev Latinoamer Quim 10:181–184Google Scholar
  194. Garcia Jiménez F, Pérezamador C, Collera ZO (1993) ent-16α, 17, 19-Kauranetriol-17-O, 19-O-di-O-β-D-glucopyranoside, a new glucoside from Turbina corymbosa. Tetrahedron 23:2557–2561Google Scholar
  195. Gardner HW, Desjardins AE, McCormick SP, Weisleder D (1994) Detoxification of the potato phytoalexin rishitin by Gibberella pulicaris. Phytochemistry 37:1001–1005Google Scholar
  196. Geuns JMC (1978) Steroid hormones and plant growth and development. Phytochemistry 17:1–14Google Scholar
  197. Ghosal S, Singh AK, Chaudhuri RK (1976) Chemical constituents of Gentianaceae XX: Natural occurrence of loliolide in Canscora decussata. J Pharmaceut Sci 65:1549–1551Google Scholar
  198. Ghosh D, Laddha KS (2006) Extraction and monitoring of phytoecdysteroids through HPLC. J Chrom Sci 44:22–26Google Scholar
  199. Ghosh M, Sinhababu SP, Sukul NC, Sahu NP, Mahato SB (1994) Antifilarial effect of solamargine isolated from Solanum khasianum. Int J Pharmacog 32:184–190Google Scholar
  200. Gibson RW, Pickett JA (1983) Wild potato repels aphids by release of aphid alarm pheromone. Nature (London) 302:608–609Google Scholar
  201. Gil RR, Lin LZ, Chai HB, Pezzuto JM, Cordell GA (1995) Cardenolides from Nierembergia aristata. J Nat Prod 58:848–856PubMedGoogle Scholar
  202. Giles JA, Schumacher JN (1961) Turkish tobacco. I. Isolation and characterization of α- and β-levantenolides. Tetrahedron 14:246–251Google Scholar
  203. Glotter E (1991) Withanolides and related ergostane-type steroids. Nat Prod Rep 8:415–440PubMedGoogle Scholar
  204. Goncharik NN, Volynets AP, Kintya PK (2004) The after-effect of steroid glycosides on seed quality and seedling growth of wheat (Triticum aestivum L.). Vestsi Natsy Akad Belarus, Ser Biyala Navuk 23–26Google Scholar
  205. Goñi I, Serrano J, Saura-Calixto F (2006) Bioaccessibility of β-carotene, lutein, and lycopene from fruits and vegetables. J Agric Food Chem 54:5382–5387PubMedGoogle Scholar
  206. Gonzalez AG, Garcia Francisco C, Freire Barreira R, Suarez Lopez E (1971) New sources of steroidal sapogenins. IX. Solanum vespertilio. Farmacia Nueva 37:905–908, 911–914Google Scholar
  207. Gonzalez AG, Freire Barreira R, Garcia Francisco C, Salazar Rocio JA, Suarez Lopez E (1972) New natural source of steroidal sapogenins. XVII. Anal Quim 68:1063–1064Google Scholar
  208. Gonzalez AG, Freire R, Francisco CG, Salazar JA, Suarez E (1973) 20S-Hydroxyvespertilin, a new steroid lactone from Solanum vespertilio. Tetrahedron 29:1731–1734Google Scholar
  209. Gonzalez AG, Freire Barreira R, Garcia Francisco C, Salazar Rocio JA, Suarez Lopez E (1974) Determination of the structures of anosmagenin and 15-dehydro-14β-anosmagenin, two new spirostanic sapogenins of Solanum vespertilio. Anal Quim 70:250–253Google Scholar
  210. Gonzalez AG, Francisco CG, Freire R, Hernández R, Salazar JA, Suarez E, Morales A, Usubillaga A (1975) Andesgenin, a new steroid sapogenin from Solanum hypomalacophyllum. Phytochemistry 14:2483–2485Google Scholar
  211. González M, Zamilpa A, Marquina S, Navarro V, Alvarez L (2004) Antimycotic spirostanol saponins from Solanum hispidum leaves and their structure-activity relationships. J Nat Prod 67:938–941PubMedGoogle Scholar
  212. Grace MH, Saleh MM (1996) Hepatoprotective effect of daturaolone isolated from Solanum arundo. Pharmazie 51:593–595PubMedGoogle Scholar
  213. Gregory P, Sinden SL, Osman SF, Tingey WM, Chessin DA (1981) Glycoalkaloids of wild, tuber-bearing Solanum species. J Agric Food Chem 29:1212–1215Google Scholar
  214. Griffiths DW, Bain H, Deighton N, Robertson GW, Finlay M, Dale B (2000) Photo-induced synthesis of tomatidenol-based glycoalkaloids in Solanum phureja tubers. Phytochemistry 53:739–745PubMedGoogle Scholar
  215. Gross D (1977) Phytoalexine und verwandte Pflanzenstoffe. In: Zechmeister L, Herz W, Grisebach H, Kirby GW (eds) Progress in the chemistry of organic natural products, vol 34. Springer Verlag, Wien/A, pp 187–247Google Scholar
  216. Grunenfelder LA, Knowles LO, Hiller LK, Knowles NR (2006) Glycoalkaloid development during greening of fresh market potatoes (Solanum tuberosum L.). J Agric Food Chem 54:5847–5854PubMedGoogle Scholar
  217. Gubarev MI, Enioutina EY, Taylor JL, Visic DM, Daynes RA (1998) Plant-derived glycoalkaloids protect mice against lethal infection with Salmonella typhimurium. Phytother Res 12:79–88Google Scholar
  218. Guishan T, Pingsheng X, Zhiyong D, Guocheng T (1991) Studies on the chemical compounds of Ipomoea batatas LAM. Nat Prod Res Develop 7:44–46Google Scholar
  219. Gutsu EV, Kintya PK (1989) Steroidal glycosides from the roots of Capsicum annuum. IV. Structure of capsicosides C2 and C3. Khim Prir Soed 582–584Google Scholar
  220. Gutsu EV, Kintya PK, Lazur’evskii GV, Balashova NN (1984) Steroidal alkaloids and glycosides of Capsicum annuum L. Rastitel’nye Resursy 20:127–130Google Scholar
  221. Gutsu EV, Kintya PK, Lazur’evskii GV (1986) Steroid glycosides of Capsicum annuum root. I. The structure of capsicosides A1, B1, and C1. Khim Prir Soed 708–712Google Scholar
  222. Gutsu EV, Kintya PK, Lazur’evskii GV (1987a) Steroid glycosides of Capsicum annuum root. II. Structure of capsicosides A2 and B2. Khim Prir Soed 242–246Google Scholar
  223. Gutsu EV, Shvets SA, Kintya PK, Lazur’evskii GV (1987b) Steroidal glycosides of Capsicum annuum L. roots. The structure of capsicosines D1, E1. FECS Int Conf Chem Biotechnol Biol Act Nat Prod (Proc), 3rd. VCH, Weinheim, Germany, pp 436–440Google Scholar
  224. Habtemariam S (1997) Cytotoxicity and immunosuppressive activity of withanolides from Discopodium penninervium. Planta Med 63:15–17PubMedGoogle Scholar
  225. Habtemariam S, Gray AI (1998) Withanolides from the roots of Discopodium penninervium. Planta Med 64:275–276PubMedGoogle Scholar
  226. Habtemariam S, Gray AI, Waterman PG (1993) 16-Oxygenated withanolides from the leaves of Discopodium penninervium. Phytochemistry 34:807–811Google Scholar
  227. Habtemariam S, Skelton BW, Waterman PG, White AH (2000) 17-Epiacnistin-A, a further withanolide from leaves of Discopodium penninervium. J Nat Prod 63:512–513PubMedGoogle Scholar
  228. Hall CA, Hobby T, Cipollini M (2006) Efficacy and mechanisms of α-solasonine- and α-solamargine-induced cytolysis on two strains of Trypanosoma cruzi. J Chem Ecol 32:2405–2416PubMedGoogle Scholar
  229. Hänsel R, Sticher O (2007) Pharmakognosie – Phytopharmazie, 8th edn. Springer, Berlin Heidelberg New YorkGoogle Scholar
  230. Haraguchi M, Mimaki Y, Motidome M, Morita H, Takeya K, Itokawa H, Yokosuka A, Sashida Y (2000) Steroidal saponins from the leaves of Cestrum sendtenerianum. Phytochemistry 55:715–720PubMedGoogle Scholar
  231. Hashimoto K, Kawagishi H, Nakayama T, Shimizu M (1997) Effect of capsianoside, a diterpene glycoside, on tight-junctional permeability. Biochim Biophys Acta Biomembranes 1323:281–290Google Scholar
  232. Hawkes JG (1990) The potato: evolution, biodiversity and genetic resources. Smithsonian Institution Press, Washington, DCGoogle Scholar
  233. Hawkes JG (1999) The economic importance of the family Solanaceae. In: Nee M, Symon D, Lester RN, Jessop JP (eds) Solanaceae IV – advances in taxonomy and utilization. Royal Botanic Gardens, Kew, pp 1–8Google Scholar
  234. Heemann V, Brümmer U, Paulsen C, Seehofer F (1983) Composition of the leaf surface gum of some Nicotiana species and Nicotiana tabacum cultivars. Phytochemistry 22:133–135Google Scholar
  235. Heftmann E (1983) Biogenesis of steroids in Solanaceae. Phytochemistry 22:1843–1860Google Scholar
  236. Heftmann E, Schwimmer S (1972) Degradation of tomatine to 3β-hydroxy-5α-pregn-16-en-20-one by ripe tomatoes. Phytochemistry 11:2783–2787Google Scholar
  237. Heftmann E, Weaver ML (1974) 26-Hydroxycholesterol and cholest-4-en-3-one, the first metabolites of cholesterol in potato plants. Phytochemistry 13:1801–1803Google Scholar
  238. Hegnauer R (1973) Chemotaxonomie der Pflanzen, vol 6. Birkhäuser Verlag Basel, Switzerland, pp 420–430; 446–449Google Scholar
  239. Hegnauer R (1990) Chemotaxonomie der Pflanzen, vol 9. Birkhäuser Verlag Basel, Switzerland, pp 585–588Google Scholar
  240. Henrici A (1996) Neuartige Sekundärstoffe unterschiedlichster Struktur aus tropischen Convolvulaceen. Dissertation Fachbereich Pharmazie, Freie Universität Berlin, GermanyGoogle Scholar
  241. Herrera-Arellano A, Jiménez-Ferrer E, Vega-Pimentel AM, Martínez-Rivera MdlA, Hernández-Hernández M, Zamilpa A, Tortoriello J (2004) Clinical and mycological evaluation of therapeutic effectiveness of Solanum chrysotrichum standardized extract on patients with Pityriasis capitis (dandruff). A double blind and randomized clinical trial controlled with ketoconazole. Planta Med 70:483–488PubMedGoogle Scholar
  242. Honbu T, Ikeda T, Zhu XH, Yoshihara O, Okawa M, Nafady AM, Nohara T (2002) New steroidal glycosides from the fruits of Solanum anguivi. J Nat Prod 65:1918–1920PubMedGoogle Scholar
  243. Hu K, Kobayashi H, Dong AJ, Jing YK, Iwasaki SG, Yao XS (1999) Antineoplastic agents. Part 3. Steroidal glycosides from Solanum nigrum. Planta Med 65:35–38PubMedGoogle Scholar
  244. Huang Y, Liu JK, Mühlbauer A, Henkel T (2002) Three novel taccalonolides from the tropical plant Tacca subflaellata. Helv Chim Acta 85:2553–2558Google Scholar
  245. Hunziker AT (2001) Genera Solanacearum – the genera of Solanaceae illustrated, arranged according to a new system. A.R.G.Gantner Verlag, Ruggell, LichtensteinGoogle Scholar
  246. Husemann T (1875) Arch Exp Path Pharm 4:369; fide Husemann et al. (1884)Google Scholar
  247. Husemann A, Hilger A, Husemann T (1884) Die Pflanzenstoffe in chemischer, physiologischer, pharmakologischer und toxikologischer Hinsicht, vol 2. Julius Springer, Berlin, pp. 1148–1149Google Scholar
  248. Hussain S, Ahmed E, Malik A, Jabbar A, Arshad M (2005) Phytochemical studies on Cressa cretica. J Chem Soc Pak 27:296–298Google Scholar
  249. Iida Y, Yanai Y, Ono M, Ikeda T, Nohara T (2005) Three unusual 22-β-O-23-hydroxy-(5α)-spirostanol glycosides from the fruits of Solanum torvum. Chem Pharm Bull 53:1122–1125PubMedGoogle Scholar
  250. Ikeda T, Ando J, Miyazono A, Zhu XH, Tsumagari H, Nohara T, Yokomizo K, Uyeda M (2000) Anti-herpes virus activity of Solanum steroidal glycosides. Biol Pharm Bull 23:363–364PubMedGoogle Scholar
  251. Indrayanto G, Cholies N, Wahyudi (1985) Influence of fruit size of Solanum wrightii on its solasodine content. Planta Med 51:470PubMedGoogle Scholar
  252. Indrayanto G, Sondakh R, Syahrani A, Utami W (1998) Solanum mammosum L. (Terong Susu): In vitro culture and the production of steroidal alkaloids and other secondary metabolites. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry vol 41, medicinal and aromatic plants IV. Springer, Berlin, Germany, pp 395–414Google Scholar
  253. Inoue H, Kato N, Uritani I (1977) 4-Hydroxydehydromyoporone from infected Ipomoea batatas root tissue. Phytochemistry 16:1063–1065Google Scholar
  254. Iorizzi M, Lanzotti V, De Marino S, Zollo F, Blanco-Molina M, Macho A, Muñoz E (2001) New glycosides from Capsicum annuum L. var. acuminatum. Isolation, structure determination, and biological activity. J Agric Food Chem 49:2022–2029PubMedGoogle Scholar
  255. Iorizzi M, Lanzotti V, Ranalli G, de Marino S, Zollo F (2002) Antimicrobial furostanol saponins from the seeds of Capsicum annuum L. var. acuminatum. J Agric Food Chem 50:4310–4316PubMedGoogle Scholar
  256. Irvine WJ, Woollen BH, Jones DH (1972) Bombiprenone from Nicotiana tabacum. Phytochemistry 11:467–469Google Scholar
  257. Ishi M (1933) The carotenoids and some lipoids of Ipomoea reptans (L.) POIR. Experiment Station Record (U.S. Department of Agriculture) 71:559Google Scholar
  258. Itoh T, Tamura T, Matsumoto T (1977) Triterpene alcohols in the seeds of Solanaceae. Phytochemistry 16:1723–1726Google Scholar
  259. Izimitani Y, Yahara S, Nohara T (1990) Novel acyclic diterpene glycosides, capsianosides A – F and I – V from Capsicum plants. Chem Pharm Bull 38:1299–1307Google Scholar
  260. Jackson DM, Severson RF, Johnson AW, Herzog GA (1986) Effect of cuticular duvane diterpenes from green tobacco leaves on tobacco budworm (Lepidoptera: Noctuidae) oviposition. J Chem Ecol 12:1349–1359Google Scholar
  261. Jackson DM, Severson RF, Sisson VA, Stephenson MG (1991) Ovipositional response of tobacco budworm moths (Lepidoptera: Noctuidae) to cuticular labdanes and sucrose esters from the green leaves of Nicotiana glutinosa L. (Solanaceae). J Chem Ecol 17:2489–2506Google Scholar
  262. Jacobo-Herrera NJ, Bremner P, Márquez N, Gupta MP, Gibbons S, Muñoz E, Heinrich M (2006) Physalins from Witheringia solanacea as modulators of the NF-κB cascade. J Nat Prod 69:328–331PubMedGoogle Scholar
  263. Jacobs WA, Fleck EE (1930) Tigogenin, a Digitalis sapogenin. J Biol Chem 88:545–550Google Scholar
  264. Jacobs WA, Simpson JCE (1935) The Digitalis sapogenins. J Biol Chem 110:429–438Google Scholar
  265. Jayaprakasam B, Nair MG (2003) Cyclooxygenase-2 enzyme inhibitory withanolides from Withania somnifera leaves. Tetrahedron 59:841–849Google Scholar
  266. Jayaprakasam B, Strasburg GA, Nair MG (2004) Potent lipid inhibitors from Withania somnifera fruits. Tetrahedron 60:3109–3121Google Scholar
  267. Jenett-Siems K (1996) Phytochemische Untersuchungen an Windengewächsen der Gattungen Calystegia, Convolvulus, Ipomoea und Merremia unter besonderer Berücksichtigung des Alkaloidvorkommens. Dissertation Fachbereich Pharmazie, Freie Universität Berlin, GermanyGoogle Scholar
  268. Jenett-Siems K, Siems K, Witte L, Eich E (2001) Merrekentrones A – D, ipomeamarone-like furanosesquiterpenes from Merremia kentrocaulos. J Nat Prod 64:1471–1473PubMedGoogle Scholar
  269. Jiménez-Escrig A, Santos-Hidalgo AB, Saura-Calixto F (2006) Common sources and estimated intake of plant sterols in the Spanish diet. J Agric Food Chem 54:3462–3471PubMedGoogle Scholar
  270. Joshi BS, Rane DF (1967) Structure and synthesis of corymbosin, a flavone from Webera corymbosa. Tetrahedron Lett. 4579–4581Google Scholar
  271. Judd WS, Campbell CS, Kellogg EA, Stevens PF (1999) Plant systematics – a phylogenetic approach. Sinauer Associates, Sunderland, MA, USAGoogle Scholar
  272. Kalinowska M, Zimowski J, P&acedil;czkowski C, Wojciechowski ZA (2005) The formation of sugar chains in triterpenoid saponins and glycoalkaloids. Phytochem Rev 4:237–257Google Scholar
  273. Kamiwatari T, Setoguchi S, Takamine K, Ogata S (2005) Content of monoterpene alcohols in stressed sweet potatoes and the flavor property of imu-shochu. Nippon Jozo Kyokaishi 100:520–526Google Scholar
  274. Kaneko K, Watanabe M, Kawakoshi Y, Mitsuhashi H (1971) Etioline as important precursor in solanidine biosynthesis in Veratrum grandiflorum. Tetrahedron Lett 4251–4254Google Scholar
  275. Kaneko K, Tanaka MW, Mitsuhashi H (1976) Origin of nitrogen in the biosynthesis of solanidine by Veratrum grandiflorum. Phytochemistry 15:1391–1393Google Scholar
  276. Kaneko K, Terada S, Yoshida N, Mitsuhashi H (1977a) Structure of barogenin from Solanum tuberosum. Phytochemistry 16:791–793Google Scholar
  277. Kaneko K, Tanaka MW, Mitsuhashi H (1977b) Dormantinol, a possible precursor in solanidine biosynthesis from budding Veratrum grandiflorum. Phytochemistry 16:1247–1251Google Scholar
  278. Kaneko K, Tanaka MW, Takahashi E, Mitsuhashi H (1977c) Teinemine and isoteinemine, two new alkaloids from Veratrum grandiflorum. Phytochemistry 16:1620–1622Google Scholar
  279. Kapundu M, Delaude C (1988) Sapogenins of Schwenckia americana L. Bull Soc Roy Sci Liège 57:561–565Google Scholar
  280. Karawya MS, Rizk AFM, Hammouda FM, Diab AM, Ahmed ZF (1972) Phytochemical investigation of certain Cestrum species growing in Egypt. Act Chim Acad Sci Hungar 72:317–322Google Scholar
  281. Kashiwaga T, Mikagi E, Mekuria DB, Boru AD, Tebayashi SI, Kim CS (2005) Ovipositional deterrent on mature stage of sweet pepper, Capsicum annuum, against Liriomyza trifolii (BURGESS). Z Naturforsch 60c:739–742Google Scholar
  282. Kato N, Imaseki H, Nakashima N, Uritani I (1971) Structure of a new sesquiterpenoid, ipomeamaronol, in diseased sweet potato root tissue. Tetrahedron Lett 843–846Google Scholar
  283. Kawaguchi Y, Ochi T, Takaishi Y, Kawazoe K, Lee KH (2004) New sesquiterpenes from Capsicum annuum. J Nat Prod 67:1893–1896PubMedGoogle Scholar
  284. Kawashima Y (1996) Flavors and fragrance materials kept in traditional folklores. Foods Food Ingred J Jpn 169:29–36Google Scholar
  285. Kennedy BS, Nielsen MT, Severson RF, Sisson VA, Stephenson MK, Jackson DM (1992) Leaf surface chemicals from Nicotiana affecting germination of Peronospora tabacina ADAM sporangia. J Chem Ecol 18:1467–1479Google Scholar
  286. Kerber VA, Moreira EA, Gomes EC, Weiss FA, Vieira RF (1993) Qualitative and quantitative evaluation of steroidal alkaloids in three Solanum species – (S. grandifolium, S. lacerdae, and S. lycocarpum) with reference to solasodine. Rev Brasil Farm 74:67–69Google Scholar
  287. Kereselidze EV, Pkheidze TA, Kemertelidze EP (1970) Steroid sapogenins from Cestrum elegans and Cestrum parqui. Khim Prir Soedin 6:379Google Scholar
  288. Kessler A, Baldwin I (2001) Defensive function of herbivore-induced plant volatile emission in nature. Science 291:2141–2144PubMedGoogle Scholar
  289. Keukens EAJ, de Vrije T, Jansen LAM, de Boer H, Janssen M, de Kroon AIPM, Jongen WMF, de Kruijff B (1996) Glycoalkaloids selectively permeabilize cholesterol containing biomembranes. Biochim Biophys Act 1279:243–250Google Scholar
  290. Khan PM, Malik A, Ahmad S, Nawaz HR (1999) Withanolides from Ajuga parviflora. J Nat Prod 62:1290–1292PubMedGoogle Scholar
  291. Kiliani H (1890) Über die Zusammensetzung des Digitonins. Ber 23:1555–1560Google Scholar
  292. Kiliani H (1911) Digitonin, Digitogensäure und ihre Oxydationsprodukte. Ber 43:3574–3579Google Scholar
  293. Kim SY, Kim HP, Huh H, Kim YC (1997) Antihepatotoxic zeaxanthins from the fruits of Lycium chinense. Arch Pharmacol Res 20:529–532Google Scholar
  294. Kim YC, Che QM, Gunatilaka AAL, Kingston DGI (1996) Bioactive steroidal alkaloids from Solanum umbelliferum. J Nat Prod 59:283–285PubMedGoogle Scholar
  295. Kinghorn AD, Su BN, Jang DS, Chang LC, Lee D, Gu JQ, Carcache-Blanco EJ, Pawlus AD, Lee SK, Park EJ, Cuendet M, Gills JJ, Bhat K, Park HS, Mata-Greenwood E, Song LL, Jang M, Pezzuto (2004) Natural inhibitors of carcinogenesis. Planta Med 70:691–705PubMedGoogle Scholar
  296. Kintya PK, Prasol TI (1991) Steroidal glycosides from seeds of Solanum tuberosum. Tuberosides C and D. Khim Prir Soed 586–587Google Scholar
  297. Kintya PK, Shvets SA (1984) Steroid glycosides of Solanum melongena seeds. Structure of melongosides A, B, E, F, G, and H. Khim Prir Soed 610–614Google Scholar
  298. Kintya PK, Shvets SA (1985a) Melongoside L and melongoside M, steroidal saponins from Solanum melongena seeds. Phytochemistry 24:197–198Google Scholar
  299. Kintya PK, Shvets SA (1985b) Melongoside N, O and P: steroidal saponins from seeds of Solanum melongena. Phytochemistry 24:1567–1569Google Scholar
  300. Kirson I, Glotter E, Ray AB, Ali A, Gottlieb HE, Sahai M (1983) Physalolactone B 3-O-β-D-glucopyranoside, the first glycoside in the withanolide series. J Chem Res, Synopses:120–121Google Scholar
  301. Kiyota N, Shingu K, Yamaguchi K, Yoshitake Y, Harano K, Yoshimitsu H, Ikeda T, Nohara T (2007) New C28 steroidal glycosides from Tubocapsicum anomalum. Chem Pharm Bull 55:34–36PubMedGoogle Scholar
  302. Knapp S, Bohs L, Nee M, Spooner DM (2004) Solanaceae – a model for linking genomics with biodiversity. Comp Funct Genom 5:285–291Google Scholar
  303. Kohara A, Nakajima C, Hashimoto K, Ikenaga T, Tanaka H, Shoyama Y, Yoshida S, Muranaka T (2005) A novel glucosyltransferase involved in steroid saponin biosynthesis in Solanum aculeatissimum. Plant Mol Biol 57:225–239PubMedGoogle Scholar
  304. Kojima M, Uritani I (1981) Abnormal secondary metabolites in plants. In: Natori S, Ikekawa N, Suzuki M (eds) Advances in natural products chemistry. Kodansha Ltd, Tokyo, Wiley, New York, pp 178–194Google Scholar
  305. Krasowski MD, McGehee DS, Moss J (1997) Natural inhibitors of cholinesterase: Implications for adverse drug reactions. Can J Anaesth 44:525–534PubMedGoogle Scholar
  306. Kubota T (1958) Volatile constituents of black-rotted sweet potato and related substances. Tetrahedron 4:68–86Google Scholar
  307. Kubota T, Matsuura T (1956) Synthesis of (±)-ipomeamarone [(±)-ngaione]. Chem Ind (London) 521–522Google Scholar
  308. Kuboyama T, Tohda C, Komatsu K (2006) Withanoside IV and its active metabolite, sominone attenuate Aβ(25-35)-induced neurodegeneration. Eur J Neurosci 23:1417–1426PubMedGoogle Scholar
  309. Kuc J (1982) Phytoalexins from the Solanaceae. In: Bailey JA, Mansfield JW (eds) Phytoalexins. Wiley, New York, pp 81–105Google Scholar
  310. Kuhn R, Grundmann C (1933) Kryptoxanthin, ein Xantophyll der Formel C40H56O. Ber 66B:1746–1750Google Scholar
  311. Kuhn R, Löw I (1947) Demissin, ein Alkaloidglykosid aus den Blättern von Solanum demissum. Ber 80:406–410Google Scholar
  312. Kuhn R, Löw I (1954) Zur Konstitution des Solanins. Angew Chem 66:639–640Google Scholar
  313. Kuhn R, Löw I (1957) Neue Alkaloidglykoside in den Blättern von Solanum chacoense. Angew. Chem 69:236Google Scholar
  314. Kuhn R, Löw I (1961a) Zur Konstitution der Leptine. Ber 94:1088–1095Google Scholar
  315. Kuhn R, Löw I (1961b) Zur Konstitution des Leptinidins. Ber 94:1096–1103Google Scholar
  316. Kuhn R, Wiegand W (1929) Der Farbstoff der Judenkirsche (Physalis Alkekengi und Physalis Franchetti). Helv Chim Acta 12:499–506Google Scholar
  317. Kuhn R, Winterstein A, Kaufmann W (1930) Konjugierte Doppelbindungen. XII. Physalis-Farbstoff. Ber 63B:1489–1497Google Scholar
  318. Kuhn R, Löw I, Trischmann H (1955a) Die Konstitution des Solanins. Ber 88:1492–1507Google Scholar
  319. Kuhn R, Löw I, Trischmann H (1955b) Die Konstitution des α-Chaconins. Ber 88:1690–1693Google Scholar
  320. Kuhn R, Löw I, Trischmann H (1957) Die Konstitution der Lycotetraose. Ber 90:203–218Google Scholar
  321. Kumar P, Kushwaha RA (2006) Medicinal evaluation of Withania somnifera (L.) Dunal (Ashwagandha). Asian J Chem 18:1401–1404Google Scholar
  322. Kuo KW, Hsu SH, Li YP, Lin WL, Liu LF, Chang LC, Lin CC, Lin CN, Sheu HM (2000) Anticancer activity evaluation of the Solanum glycoalkaloid solamargine. Triggering apoptosis in human hepatoma cells. Biochem Pharmacol 60:1865–1873PubMedGoogle Scholar
  323. Kupchan SM, Barboutis SJ, Know JR, Lau Cam CA (1965a) Beta-solamarine: Tumor inhibitor isolated from Solanum dulcamara. Science 150:1827–1828PubMedGoogle Scholar
  324. Kupchan SM, Doskotch RW, Bollinger P, McPhail AT, Sim GA, Renauld JAS (1965b) The isolation and structural elucidation of a novel steroidal tumor inhibitor from Acnistus arborescens. J Am Chem Soc 87:5805–5806PubMedGoogle Scholar
  325. Kuroyanagi M, Shibata K, Umehara K (1999) Cell differentiation inducing steroids from Withania somnifera. Chem Pharm Bull 47:1646–1649Google Scholar
  326. Kusano G, Takahashi A, Sugiyama K, Nozoe S (1987) Antifungal properties of Solanum alkaloids. Chem Pharm Bull 35:4862–4867PubMedGoogle Scholar
  327. Lachman J, Hamouz K, Orsák M, Pivec V (2001) Potato glycoalkaloids and their significance in plant protection and human nutrition – Review. Rostlinná Vyroba 47:181–191Google Scholar
  328. Lal P, Misra L, Sangwan R, Tuli R (2006) New withanolides from fresh berries of Withania somnifera. Z Naturforsch 61b:1143–1147Google Scholar
  329. Laurila J, Laakso I, Valkonen JPT, Hiltunen R, Pehu E (1996) Formation of parental-type and novel glycoalkaloids in somatic hybrids between Solanum brevidens and S. tuberosum. Plant Sci 118:145–155Google Scholar
  330. Lavie D, Glotter E, Shvo Y (1965a) Constituents of Withania somnifera. III. The side chain of withaferin A. J Org Chem 30:1774–1778Google Scholar
  331. Lavie D, Glotter E, Shvo Y (1965b) Constituents of Withania somnifera. IV. The structure of withaferin A. J Chem Soc 7517–7531Google Scholar
  332. Lavie D, Greenfield S, Glotter E (1966) Constituents of Withania somnifera. VI. The stereochemistry of withaferin A. J Chem Soc C 1753–1756Google Scholar
  333. Lee JH, Kiyota N, Ikeda T, Nohara T (2006) Acyclic diterpene glycosides, capsianosides VIII, IX, X, XIII, XV and XVI from the fruits of paprika Capsicum annuum L. var. grossum BAILEY and jalapeño Capsicum annuum L. var. annuum. Chem Pharm Bull 54:1365–1369PubMedGoogle Scholar
  334. Lee KR, Kozukue N, Han JS, Park JH, Chang EY, Baek EJ, Chang JS, Friedman M (2004) Glycoalkaloids and metabolites inhibit the growth of human colon (HT29) and liver (HepG2) cancer cells. J Agric Food Chem 52:2832–2839PubMedGoogle Scholar
  335. Lee YY, Hashimoto F, Yahara S, Nohara T, Yoshida N (1994) Steroidal glycosides from Solanum dulcamara. Chem Pharm Bull 42:707–709Google Scholar
  336. Lee YY, Hsu FL, Nohara T (1997) Two new soladulcidine glycosides from Solanum lyratum. Chem Pharm Bull 45:1381–1382PubMedGoogle Scholar
  337. Leffingwell JC (1999) Basic chemical constituents of tobacco leaf and differences among tobacco types. In: Davis DL, Nielsen MT (eds) Tobacco – production, chemistry and technology. Blackwell Science, Oxford, UK, pp 265–284Google Scholar
  338. Lenucci MS, Cadinu D, Taurino M, Piro G, Dalessandro G (2006) Antioxidant composition in cherry and high-pigment tomato cultivars. J Agric Food Chem 54:2606–2613PubMedGoogle Scholar
  339. Leonart R, Moreira EA (1984) Solasodine in Solanum brusquense SMITH & DOWNS. Tribuna Farmaceut 51–52:10–25Google Scholar
  340. Lepschi BJ, Symon DE (1999) A preliminary cladistic analysis of Australasian Solanum and Lycianthes. In: Nee M, Symon D, Lester RN, Jessop JP (eds) Solanaceae IV – advances in taxonomy and utilization. Royal Botanic Gardens, Kew, pp 161–170Google Scholar
  341. Levin RA, Watson K, Bohs L (2005) A four-gene study of evolutionary relationships in Solanum section Acanthophora. Am J Bot 92:603–612Google Scholar
  342. Levin RA, Myers NR, Bohs L (2006) Phylogenetic relationships among the “spiny solanums” (Solanum subgenus Leptostemonum, Solanaceae). Am J Bot 93:157–169Google Scholar
  343. Lewinsohn E, Sitrit Y, Bar E, Azulay Y, Meir A, Zamir D, Tadmor Y (2005) Carotenoid pigmentation affects the volatile composition of tomato and watermelon fruits, as revealed by comparative genetic analyses. J Agric Food Chem 53:3142–3148PubMedGoogle Scholar
  344. Li C, Zheng Y, Sun Y, Wu Z, Liu M (1988) Studies on the odoriferous volatile constituents of the flower of Cestrum nocturnum L. Youji Huaxue 8:357–361Google Scholar
  345. Liang CH, Liu LF, Shiu LY, Huang YS, Chang LC, Kuo KW (2004) Action of solamargine on TNFs and cisplatin-resistant human lung cancer cells. Biochem Biophys Res Commun 322:751–758PubMedGoogle Scholar
  346. Liang P, Noller CR (1935) Saponins and sapogenins. III. The sapogenins obtained from Chlorogalum pomeridianum (Liliaceae). J Am Chem Soc 57:525–527Google Scholar
  347. Lin CN, Lu CM, Cheng MK, Gan KH (1990) The cytotoxic principles of Solanum incanum. J Nat Prod 53:513–516PubMedGoogle Scholar
  348. Litowitz TL, Clark LR, Soloway RA (1994) 1993 Annual Report of the American Association of Poison Control Centers Toxic Exposure Surveillance System. J Ermerg Med 12:546–584Google Scholar
  349. Liu LF, Liang CH, Shiu LY, Lin WL, Lin CC, Kuo KW (2004) Action of solamargine on human lung cancer cells – enhancement of the susceptibility of cancer cells to TNFs. FEBS Lett 577:67–74PubMedGoogle Scholar
  350. Lockley WJS, Rees HH, Goodwin TW (1976) Biosynthesis of steroidal withanolides in Withania somnifera. Phytochemistry 15:937–939Google Scholar
  351. Luis JG, Echeverri F, González AG (1994) Acnistins C and D, withanolides from Dunalia solanacea. Phytochemistry 36:1297–1301Google Scholar
  352. Lupashku GA, Sashko YF, Mashchenko NE, Kintya PK, Shvets SA (2004) Immunomodulating activity of steroid glycosides. Dok Ross Akad Sel’skok Nauk (4) 28–31Google Scholar
  353. Ma CY, Williams ID, Che CT (1999) Withanolides from Hyoscyamus niger seeds. J Nat Prod 62:1445–1447PubMedGoogle Scholar
  354. Mackinney G (1935) J Biol Chem 112:421; fide Baccarini et al. (1965)Google Scholar
  355. Mahmood U, Thakur RS, Blunden G (1983) Neochlorogenin, neosolaspigenin, and solaspigenin from Solanum torvum leaves. J Nat Prod 46:427–428Google Scholar
  356. Maiti PC, Mookherjea S (1965) Hispidogenin. Chem Ind 39:1653PubMedGoogle Scholar
  357. Makino B, Kawai M, Ogura T, Nakanishi M, Yamamura H, Butsugan Y (1995) Structural revision of physalin H isolated from Physalis angulata. J Nat Prod 58:1668–1674Google Scholar
  358. Maldonado E, Torres FR, Martínez M, Pérez-Castorena AL (2004) 18-Acetoxywithanolides from Physalis chenopodifolia. Planta Med 70:59–64PubMedGoogle Scholar
  359. Maldonado E, AlvaradoVE, Torres FR, Martínez M, Pérez-Castorena AL (2005) Androstane and withanolides from Physalis cinerascens. Planta Med 71:548–553PubMedGoogle Scholar
  360. Mander LN (2003) Twenty years of gibberellin research. Nat Prod Rep 20:49–69PubMedGoogle Scholar
  361. Maniara G, Laine R, Kuc J (1984) Oligosaccharides from Phytophthora infestans enhance the elicitation of sesquiterpenoid stress metabolites by arachidonic acid in potato. Physiol Plant Pathol 24:177–186Google Scholar
  362. Mann JD (1978) Production of solasodine for the pharmaceutical industry. In: Brady NC (ed) Advances in agronomy, vol 30. Academic Press, New York, pp 207–243Google Scholar
  363. Maoka T, Akimoto N, Ishiguro K, Yoshinaga M, Yoshimoto M (2007) Carotenoids with a 5, 6-dihydro-5, 6-dihydroxy-β-end group, from yellow sweet potato “Benimasari”, Ipomoea batatas Lam. Phytochemistry 68:1740–1745PubMedGoogle Scholar
  364. Marker RE, Rohrmann E (1939) Sterols. LXXIII. Reactions of digitogenin and gitogenin. J Am Chem Soc 61:2724–2726Google Scholar
  365. Marker RE, Tsukamoto T, Turner DL (1940) Sterols. C. Diosgenin. J Am Chem Soc 62:2542–2543Google Scholar
  366. Marker RE, Wagner RB, Ulshofer PR, Wittbecker EL, Goldsmith DP, Ruof CH (1943) Sterols CLVII. Sapogenins LXIX. Isolation and structures of thirteen new steroidal sapogenins. New sources for known sapogenins. J Am Chem Soc 65:1199–1209Google Scholar
  367. Marshall JA, Knapp S, Davey MR, Power JB, Cocking EC, Bennett MD, Cox AV (2001) Molecular systematics of Solanum section Lycopersicum (Lycopersicon) using the nuclear ITS rDNA region. Theor Appl Genet 103:1216–1222Google Scholar
  368. Marston A, Hostettmann K (1985) Plant molluscicides. Phytochemistry 24:639–652Google Scholar
  369. Mashchenko NE, Lazur’evskii GV, Kintya PK (1977) Steroidal glycosides. XVIII. Structure of funkiosides C and D from Funkia ovata. Khim Prir Soed:123–124Google Scholar
  370. Mashchenko NE, Prasol TI, Kintya PK (1995) Steroidal glycosides from potato seeds and their biological activity. Book of abstracts, 210th ACS National Meeting, Chicago, IL, August 20–24, (Pt 1), AGFD-160Google Scholar
  371. Matevosyan GL, Kudashov AA, Ezaov AK, Sotnik VG (2001) Effect of plant growth regulators on the growth, development, yield, and quality of tomatoes under greenhouse conditions. Agrokhimiya (11) 49–58Google Scholar
  372. Matsuda H, Murakami T, Kishi A, Yoshikawa M (2001) Structures of withanosides I, II, III, IV, V, VI, and VII, new withanolide glycosides, from the roots of Indian Withania somnifera DUNAL and inhibitory activity for tachyphylaxis to clonidine in isolated guinea-pig ileum. Bioorg Med Chem 9:1499–1507PubMedGoogle Scholar
  373. Matthews D, Jones H, Gans P, Coates S, Smith LMJ (2005) Toxic secondary metabolite production in genetically modified potatoes in response to stress. J Agric Food Chem 53:7766–7776PubMedGoogle Scholar
  374. Maxwell A, Pingal R, Reynolds WF, McLean S (1996) 3-Aminospirosolane alkaloids from Solanum arboreum. Phytochemistry 43:913–915Google Scholar
  375. McCue KF, Allen PV, Shepherd LVT, Blake A, Whitworth J, Maccree MM, Rockhold DR, Stewart D, Davies HV, Belknap WR (2006) The primary in vivo steroidal alkaloid glucosyltransferase from potato. Phytochemistry 67:1590–1597PubMedGoogle Scholar
  376. McCue KF, Allen PV, Shepherd LVT, Blake A, Maccree MM, Rockhold DR, Novy RG, Stewart D, Davies HV, Belknap WR (2007). Potato glycosterol rhamnosyltransferase, the terminal step in triose side-chain biosynthesis. Phytochemistry 68:327–334PubMedGoogle Scholar
  377. McDowall FH (1925) Constituents of Myoporum laetum FORST (“the ngaio”). Part I. J Chem Soc, Transact 127:2200–2207Google Scholar
  378. McGehee DS, Krasowski MD, Fung DL, Wilson B, Gronert GA, Moss J (2000) Cholinesterase inhibition by potato glycoalkaloids slows mivacurium metabolism. Anaesthesiology 93:510–519Google Scholar
  379. Mehmood A, Malik A, Anis I, Khan PM, Riaz M, Makhmoor T, Choudhary MI (2002) Highly oxygenated triterpenes from the roots of Atropa acuminata. Nat Prod Lett 16:371–376PubMedGoogle Scholar
  380. Mello JRB (2003) Calcinosis – calcinogenic plants. Toxicon 41:1–12PubMedGoogle Scholar
  381. Mesaik MA, Zaheer-ul-Haq, Murad S, Ismail Z, Abdullah NR, Gill HK, Atta-ur-Rahman, Yousaf M, Siddiqui RA, Ahmad A, Choudhary MI (2006) Biological and molecular docking studies on coagulin-H: Human IL-2 novel natural inhibitor. Mol Immun 43:1855–1863Google Scholar
  382. Meyer K, Bernoulli F (1961) Basische Inhaltsstoffe von Solanum paniculatum. Pharmaceut Acta Helv 36:80–96Google Scholar
  383. Mi Q, Lantvit D, Reyes-Lim E. Chai H, Zhao W, Lee IS, Peraza-Sánchez S, Ngassapa LBS, Riswan S, Hollingshead MG, Mayo JG, Farnsworth NR, Cordell GA, Kinghorn AD, Pezzuto JM (2002) Evaluation of the potential cancer chemotherapeutic efficacy of natural product isolates employing in vivo hollow fiber tests. J Nat Prod 65:842–850PubMedGoogle Scholar
  384. Miguel MA, Barroso (1994) Accumulation of stress metabolites in cell suspension cultures of Hyoscyamus albus. Phytochemistry 35:371–375Google Scholar
  385. Milanesi L, Monje P, Boland R (2001) Presence of estrogens and estrogen receptor-like proteins in Solanum glaucophyllum. Biochem Biophys Res Commun 289:1175–1179PubMedGoogle Scholar
  386. Mimaki Y, Watanabe K, Ando Y, Sakuma C, Sashida Y, Furuya S, Sakagami H (2001) Flavonol glycosides and steroidal saponins from the leaves of Cestrum nocturnum and their cytoxicity. J Nat Prod 64:17–22PubMedGoogle Scholar
  387. Mimaki Y, Watanabe K, Sakagami H, Sashida Y (2002) Steroidal glycosides from the leaves of Cestrum nocturnum. J Nat Prod 65:1863–1868PubMedGoogle Scholar
  388. Misra L, Lal P, Sangwan RS Sangwan NS, Uniyal GC, Tuli R (2005) Unusually sulfated and oxygenated steroids of Withania somnifera. Phytochemistry 66:2702–2707PubMedGoogle Scholar
  389. Moehs CP, Allen PV, Rockhold DR, Stapleton A, Friedman M, Belknap W (1998) The potato genes for solanidine UDP-glucose glucosyltransferase and the use of antisense genes to limit glycoalkaloid biosynthesis. PCT Int Appl, 54 ppGoogle Scholar
  390. Monteagudo ES, Burton G, Gonzalez CM, Oberti JC, Gros EG (1988) 14β, 17β-Dihydroxywithanolides from Jaborosa bergii. Phytochemistry 27:3925–3928Google Scholar
  391. Morales Méndez A, Cázares R, Romo J (1970) Components of Solanum torvum. Rev Latinoam Quim 1:1–6Google Scholar
  392. Moreira E, Cecy C, Nakashima T, Cavazzani JR, Miguel OG, Krambeck R (1980) Solasodine in Solanum erianthum D.DON. Tribuna Farmac 48:24–43Google Scholar
  393. Moreno-Murillo B, Fajardo MVM, Suárez MM (2001) Cytotoxicity screening of some South American Solanaceae. Fitoterapia 72:680–685PubMedGoogle Scholar
  394. Moretti C, Sauvain M, Lavaud C, Massiot G Bravo JA, Muñoz V (1998) A novel antiprotozoal aminosteroid from Saracha punctuata. J Nat Prod 61:1390–1393PubMedGoogle Scholar
  395. Morikawa T, Xu F, Matsuda H, Yoshikawa M (2006) Structures of new flavonoids, erycibenins D, E, and F, and NO production inhibitors from Erycibe expansa originating in Thailand. Chem Pharm Bull 54:1530–1534PubMedGoogle Scholar
  396. Moser D, Klaiber I, Vogler B, Kraus W (1999) Molluscicidal and antibacterial compounds from Petunia hybrida. Pesticide Sci 55:336–339Google Scholar
  397. Mühlenbeck U, Kortenbusch A, Barz W (2002) In vitro culture and the production of secondary metabolites in Solanum khasianum. In: Nagata T (ed) Biotechnology in agriculture and forestry, vol 51, medicinal and aromatic plants XII, Springer, Berlin, Germany, pp 268–280Google Scholar
  398. Müller KO, Börger H (1940) Arb Biol Reichsanst Landwiss Forstwiss (Berlin) 23:189; fide Stoessl et al. (1976), Kojima and Uritani (1981)Google Scholar
  399. Murai A, Sato S, Osada A, Katsui N, Masamune T (1982a) Biosynthesis from solavetivone of the phytoalexin rishitin in potato. Implicit role of solavetivone as an activator. J Chem Soc, Chem Commun 32–33Google Scholar
  400. Murai A, Abiko A, Ono M, Masamune T (1982b) Synthesis of aubergenone, a sesquiterpenoid phytoalexin from diseases eggplants. Bull Chem Soc Jpn 55:1191–1194Google Scholar
  401. Murai A, Yoshizawa Y, Miyazaki H, Masamune T, Sato N (1987) Biosynthesis of phytotuberin. Chem Lett 1377–1378Google Scholar
  402. Murakami K, Saijo R, Nohara T, Tomimatsu T (1981) Studies on the constituents of Solanum plants. I. On the constituents of the stem parts of Solanum lyratum. Yagugaku Zasshi 101:275–279Google Scholar
  403. Murofushi N, Yokota T, Takahashi N (1970) Isolation and structures of gibberellins from immature seeds of Calonyction aculeatum. Agric Biol Chem 34:1436–1438Google Scholar
  404. Murofushi N, Yokota T, Takahashi N (1971) Structures of gibberellins A33 and A35 from immature seeds of Calonyction aculeatum. Agric Biol Chem 35:441–443Google Scholar
  405. Murofushi N, Yokota T, Takahashi N (1973) Structures of kauranoic acids in Calonyction aculeatum. Tetrahedron Lett 789–792Google Scholar
  406. Nagafuji S, Okabe H, Akahane H, Abe F (2004) Trypanocidal constituents in plants 4. Withanolides from the aerial parts of Physalis angulata. Biol Pharm Bull 27:193–197PubMedGoogle Scholar
  407. Nagaoka T, Goto K, Watanabe A, Sakata Y, Yoshihara T (2001) Sesquiterpenoids in root exudates of Solanum aethiopicum. Z Naturforsch 56c:707–713Google Scholar
  408. Nagase H, Nagaoka T, Watanabe A, Sakata Y, Yoshihara T (2001) Sesquiterpenoids from the roots of Solanum aethiopicum. Z Naturforsch 56c:181–187Google Scholar
  409. Nakamura T, Komori C, Lee Y, Hashimoto F, Yahara S, Nohara T, Ejima A (1996) Cytotoxic activities of Solanum steroidal glycosides. Biol Pharm Bull 19:564–566PubMedGoogle Scholar
  410. Nalbandov O, Yamamoto RT, Fraenkel GS (1964) Nicandrenone, a new compound with insecticidal properties, isolated from Nicandra physalodes. J Agric Food Chem 12:55–59Google Scholar
  411. Nee M (1999) Synopsis of Solanum in the New World. In: Nee M, Symon D, Lester RN, Jessop JP (eds) Solanaceae IV – advances in taxonomy and utilization, Royal Botanic Gardens, Kew, UK, pp 285–333Google Scholar
  412. Nee M (2001) Solanaceae systematics for the 21st century. In: Van den Berg RG, Barendse GWM, van der Weerden GM, Mariani C (eds) Solanaceae V – advances in taxonomy and utilization. Nijmegen University Press, Nijmegen, The Netherlands, pp 3–22Google Scholar
  413. Neuwinger HD (1996) African ethnobotany – poisons and drugs. Chapman & Hall, LondonGoogle Scholar
  414. Neuwinger HD (2000) African traditional medicine. A dictionary of plant use and applications. Medpharm Scientific Publ, Stuttgart, GermanyGoogle Scholar
  415. Nicotra VE, Ramacciotti NS, Gil RR, Oberti JC, Feresin GE, Guerrero CA, Baggio RF, Garland MT, Burton G (2006) Phytotoxic withanolides from Jaborosa rotacea. J Nat Prod 69:783–789PubMedGoogle Scholar
  416. Niero R, Da Silva IT, Tonial GC, Camacho BDS, Gacs-Baitz E, Delle Monache G, Delle Monache F (2006) Cilistepoxide and cilistadiol, two new withanolides from Solanum sisymbrifolium. Nat Prod Res, A 20:1164–1168Google Scholar
  417. Noguchi E, Fujiwara Y, Matsushita S, Ikeda T, Ono M, Nohara T (2006) Metabolism of tomato steroidal glycosides in humans. Chem Pharm Bull 54:1312–1314PubMedGoogle Scholar
  418. Noma M, Suzuki F, Gamou K, Kawashima N (1982) Two labdane diterpenoids from Nicotiana raimondii. Phytochemistry 21:395–397Google Scholar
  419. O’Donovan O, Beatty S (2006) Evidence that macular pigment protects against AMD and the relationship between macular pigment and serum and dietary levels of lutein and zeaxanthin. In: Motohashi N (ed) Lutein: prevention and treatment for age-related diseases. Transworld Research Network, Trivandrum, India; pp 257–279Google Scholar
  420. Oddo G (1929) Über das Solanin. Ber 62:267–271Google Scholar
  421. Oddo G, Colombano A (1905); fide Oddo (1929)Google Scholar
  422. Ohmura E, Nakamura T, Tian RH, Yahara S, Yoshimitsu H, Nohara T (1995) 26-Aminocholestanol derivative, a novel key intermediate of steroidal alkaloids, from Solanum abutiloides. Tetrahedron Lett 36:8443–8444Google Scholar
  423. Okamura S, Shingu K, Yahara S, Kohoda H, Nohara T (1992) Constituents of solanaceous plants. XXV. Two new steroidal glycosides from Scopolia japonica MAXIM. Chem Pharm Bull 40:2981–2983Google Scholar
  424. Olmstead RG, Sweere JA, Spangler RF, Bohs L, Palmer JD (1999) Phylogeny and provisional classification of the Solanaceae based on chloroplast DNA. In: Nee M, Symon DE, Lester RN, Jessop JP (eds) Solanaceae IV. Royal Botanic Gardens, Kew, pp 111–137Google Scholar
  425. Ono H, Kozuka D, Chiba Y, Horigane A, Isshiki K (1997) Structure and cytotoxicity of dehydrotomatine, a minor component of tomato glycoalkaloids. J Agric Food Chem 45:3743–3746Google Scholar
  426. Ono M, Nishimura K, Suzuki K, Fukushima T, Igoshi K, Yoshimitsu H, Ikeda T, Nohara T (2006a) Steroidal glycosides, from the underground parts of Solanum sodomaeum. Chem Pharm Bull 54:230–233PubMedGoogle Scholar
  427. Ono M, Takara Y, Egami M, Uranaka K, Yoshimitsu H, Matsushita S, Fujiwara Y, Ikeda T, Nohara T (2006b) Steroidal alkaloid glycosides, esculeosides C and D, from the ripe fruit of Cherry tomato. Chem Pharm Bull 54:237–239PubMedGoogle Scholar
  428. Orgell WH, Vaidya KA (1958) Inhibition of human plasma cholinesterase in vitro by extracts of solanaceous plants. Science 128:1136–1137PubMedGoogle Scholar
  429. Oritani T, Kiyota H (2003) Biosynthesis and metabolism of abscisic acid and related compounds. Nat Prod Rep 20:414–425PubMedGoogle Scholar
  430. Oshima Y, Hikino H, Sahai M, Ray A (1989) Withaperuvin H, a withanolide of Physalis peruviana roots. J Chem Soc, Chem Commun:628–629Google Scholar
  431. Osman SF, Herb SF, Fitzpatrick TH, Schmiediche P (1976) Commersonine, a new glycoalkaloid from two Solanum species. Phytochemistry 15:1065–1067Google Scholar
  432. Osorio C, Duque C, Batista-Viera F (2003) Studies on aroma generation in lulo (Solanum quitoense): Enzymatic hydrolysis of glycosides from leaves. Food Chem 81:333–340Google Scholar
  433. Paczkowski C, Kalinowska, Wojciechowski ZA (1998) The 3-O-glucosylation of steroidal sapogenins and alkaloids in eggplant (Solanum melongena); evidence for two separate glucosyltransferases. Phytochemistry 48:1151–1159Google Scholar
  434. Paschold A, Halitschke R, Baldwin IT (2006) Using ‘mute’ plants to translate volatile signals. Plant J 45:275–291PubMedGoogle Scholar
  435. Pearce CM, Skelton NJ, Naylor S, Kanaan R, Kelland J, Oelrichs PB, Sanders JKM, Williams DH (1992) Parquin and carboxyparquin, toxic kaurene glycosides from the shrub Cestrum parqui. J Chem Soc, Perkin Trans 1 (Org Biorg Chem):593–600Google Scholar
  436. Pedras MSC, Ahiahonu PWK (2005) Metabolism and detoxification of phytoalexins and analogs by phytopathogenic fungi. Phytochemistry 66:391–411PubMedGoogle Scholar
  437. Peng Y, Ma C, Li Y, Leung KSY, Jiang ZH, Zhao Z (2005) Quantification of zeaxanthin dipalmitate and total carotenoids in Lycium fruits (Fructus Lycii). Plant Foods Hum Nutr 60:161–164PubMedGoogle Scholar
  438. Peralta IE, Spooner DM (2001) Granule-bound starch synthase (GBSSI) gene phylogeny of wild tomatoes (Solanum L. section Lycopersicon [MILL.] WETTST. subsection Lycopersicon). Am J Bot 88:1888–1902Google Scholar
  439. Percival G (1999) Light-induced glycoalkaloid accumulation of potato tubers (Solanum tuberosum L.). J Sci Food Agric 79:1305–1310Google Scholar
  440. Pérez-Castorena AL, García M, Martínez M, Maldonado E (2004) Physalins from Physalis solanaceous. Biochem Syst Ecol 32:1231–1234Google Scholar
  441. Pérez-Castorena AL, Oropeza EF, Vázquez AR, Martínez M, Maldonado E (2006) Labdanes and withanolides from Physalis coztomatl. J Nat Prod 69:1029–1033PubMedGoogle Scholar
  442. Petersen HW, Mølgaard P, Nyman U, Olsen CE (1993) Chemotaxonomy of the tuber-bearing Solanum species, subsection Potatoe (Solanaceae). Biochem Syst Ecol 21:629–644Google Scholar
  443. Pianzzola MJ, Zarantonelli L, González G, Fraguas LF, Vázquez A (2005) Genetic, phytochemical and biochemical analyses as tools for biodiversity evaluation of wild accessions of Solanum commersonii. Biochem Syst Ecol 33:67–78Google Scholar
  444. Piccinelli AL, Salazar de Ariza J, Miranda RV, Mora SQ, Aquino R, Rastrelli L (2005) Three new furostanol saponins from the leaves of Lycianthes synanthera (“chomte”), an edible Mesoamerican plant. J Agric Food Chem 53:289–294PubMedGoogle Scholar
  445. Pichersky E, Noel JP, Dudareva N (2006) Biosynthesis of plant volatiles: Nature’s diversity and ingenuity. Science 311:808–811PubMedGoogle Scholar
  446. Pokrovskii AA (1956) The effect of the alkaloids of the sprouting potato on cholinesterase. Biokhimiia 21:683–688PubMedGoogle Scholar
  447. Pomilio AB, González MD, Eceizabarrena CC (1996) 7, 8-Dihydroajugasterone C, norhygrine and other constituents of Nierembergia hippomanica. Phytochemistry 41:1393–1398Google Scholar
  448. Pongprayoon U, Baeckstroem P, Jacobsson U, Lindstroem M, Bohlin L (1992) Antispasmodic activity of β-damascenone and E-phytol isolated from Ipomoea pes-caprae. Planta Med 58:19–21PubMedGoogle Scholar
  449. Prelog V, Jeger O (1953) The chemistry of Solanum and Veratrum Alkaloids. In: Manske RHF, Holmes HL (eds) The alkaloids – chemistry and physiology, vol 3. Academic Press, New York, pp 247–314Google Scholar
  450. Prelog V, Jeger O (1960) Steroidal alkaloids: The Solanum group. In: Manske RHF (ed) The alkaloids – chemistry and physiology, vol 7. Academic Press, New York, pp 343–361Google Scholar
  451. Prelog V, Szpilfogel S (1942) Über Steroide und Sexualhormone. LXXIX. Über das 2-Äthyl-5-methyl-pyridine, ein Dehydrierungsprodukt des Solanidins. Helv Chim Acta 25:1306–1313Google Scholar
  452. Prema TP, Raghuramulu N (1996) Vitamin D3 and its metabolites in the tomato plant. Phytochemistry 42:617–620PubMedGoogle Scholar
  453. Purcell AE, Walter WM Jr (1968) Carotenoids of centennial variety sweet potato, Ipomoea batatas. J Agric Food Chem 16:769–770Google Scholar
  454. Quyen IT, Khoi NH, Suong NN, Schreiber K, Ripperger H (1987) Steroid alkaloids and yamogenin from Solanum spirale. Planta Med 53:292–293Google Scholar
  455. Raguso RA, Levin RA, Foose SE, Holmerg MW, McDade LA (2003) Fragrance chemistry, nocturnal rhythms and pollination “syndromes” in Nicotiana. Phytochemistry 63:265–284PubMedGoogle Scholar
  456. Raguso RA, Schlumpberger BO, Kaczorowski RL, Holtsford TP (2006) Phylogenetic fragrance patterns in Nicotiana sections Alatae and Suaveolentes. Phytochemistry 67:1931–1942PubMedGoogle Scholar
  457. Raker CM, Spooner DM (2002) Chilean tetraploid cultivated potato, Solanum tuberosum, is distinct from the Andean populations: Microsatellite data. Crop Sci 42:1451–1458Google Scholar
  458. Raulais D, Billet D (1970) Sur un nouveau sesquiterpène, isolé du bois de Humbertia madagascariensis LAMARCK. Bull Soc Chim France 2401–2404Google Scholar
  459. Ray AB, Gupta M (1994) Withasteroids, a growing group of naturally occurring steroidal lactones. In: Zechmeister L, Herz W, Kirby GW, Moore RE, Steglich W, Tamm C (eds) Progress in the chemistry of organic natural products, vol 63. Springer, Wien/A, pp 1–106Google Scholar
  460. Reid WW (1979) The diterpenes of Nicotiana species and N. tabacum cultivars. In: Hawkes JG, Lester RN, Skelding AD (eds) The Biology and Taxonomy of the Solanaceae. Linn Soc Symposium Series No 7, Academic Press, London, pp 273–278Google Scholar
  461. Renault S, De Lucca AJ, Boue S, Bland JM, Vigo CB, Selitrennikoff CP (2003) CAY-1, a novel antifungal compound from Cayenne pepper. Med Mycol 41:75–82PubMedGoogle Scholar
  462. Ripperger H (1990) Steroid alkaloids and sapogenins from some Solanum and a Lycianthes species. Pharmazie 45:381–382Google Scholar
  463. Ripperger H (1998) Solanum steroid alkaloids – an update. In: Pelletier SW (ed) Alkaloids: chemical and biological perspectives, vol 12. Elsevier Science, Amsterdam, The Netherlands, pp 103–185Google Scholar
  464. Ripperger H, Kamperdick C (1998) First isolation of physalins from the genus Saracha of Solanaceae. Pharmazie 53:144–145Google Scholar
  465. Ripperger H, Porzel A (1992) 2α-Hydroxysoladulcidine from Lycianthes biflora. Phytochemistry 31:725–726Google Scholar
  466. Ripperger H, Porzel A (1994) Steroidal alkaloid glycosides from Solanum robustum. Liebigs Ann Chem 517–520Google Scholar
  467. Ripperger H, Porzel A (1997) Steroidal alkaloid glycosides from Solanum suaveolens. Phytochemistry 46:1279–1282PubMedGoogle Scholar
  468. Ripperger H, Schreiber K (1981) Solanum steroid alkaloids. In: Manske RHF, Rodrigo RGA (eds) The alkaloids – chemistry and physiology, vol 19. Academic Press, New York, pp 81–191Google Scholar
  469. Ripperger H, Budzikiewicz H, Schreiber K (1967a) Jurubin, ein stickstoff-haltiges Steroidsaponin neuartigen Strukturtyps aus Solanum paniculatum L.; über die Struktur von Paniculidin. Ber 100:1725–1740Google Scholar
  470. Ripperger H, Schreiber K, Budzikiewicz H (1967b) Isolierung von Neochlorogenin und Paniculogenin aus Solanum paniculatum L. Ber 100:1741–1752Google Scholar
  471. Roberts DL, Rowland RL (1962) Macrocyclic diterpenes α- and β-4, 8, 13-duvatriene-1, 3-diols from tobacco. J Org Chem 27:3989–3995Google Scholar
  472. Roddick JG (1989) The acetylcholinesterase-inhibitory activity of steroidal glycoalkaloids and their aglycones. Phytochemistry 28:2631–2634Google Scholar
  473. Roddick JG, Rijnenberg AL, Weissenberg M (1990) Membrane disrupting properties of the steroidal glycoalkaloids solasonine and solamargine. Phytochemistry 29:1513–1518Google Scholar
  474. Roddick JG, Weissenberg M, Leonard AL (2001) Membrane disruption and enzyme inhibition by naturally-occurring and modified chacotriose-containing Solanum steroidal glycoalkaloids. Phytochemistry 56:603–610PubMedGoogle Scholar
  475. Römer S, Fraser PD (2005) Recent advances in carotenoid biosynthesis, regulation and manipulation. Planta 221:305–308PubMedGoogle Scholar
  476. Rozkrutowa B (1987) Phytochemical investigation on Browallia viscosa. FECS Int Conf Chem Biotechnol Biol Act Nat Prod [Proc], 3rd, 1985. VCH, Weinheim, Germany, pp 178–181Google Scholar
  477. Rozkrutowa B (1991) Constituents of Browallia grandiflora. Fitoterapia 62:459Google Scholar
  478. Rüttimann A, Englert G, Mayer H, Moss GP, Weedon BCL (1983) Synthese von (3R, 3,S, 5,R)-Capsanthin, (3S, 5R, 3,S, 5,R)-Capsorubin, (3)S, 5,R)-Kryptocapsin und einigen verwandten Verbindungen. Ein neuer Zugang zu optisch aktiven Fünfring-Carotinoidbausteinen durch Hydroborierung. Helv Chim Acta 66:1939–1960Google Scholar
  479. Saez J, Cardona W, Espinal D, Blair S, Mesa J, Bocar M, Jossang A (1998) Five new steroids from Solanum nudum. Tetrahedron 54:10771–10778Google Scholar
  480. Sahu NP, Chakravarti RN (1971) Constituents of the leaves of Argyreia speciosa. Phytochemistry 10:1949Google Scholar
  481. Saijo R, Murakami K, Nohara T, Tomimatsu T, Sato A, Matsuoka K (1982) On the constituents of the immature berries of Solanum nigrum L. Yakugaku Zasshi 102:300–305PubMedGoogle Scholar
  482. Saijo R, Fuke C, Murakami K, Nohara T, Tomimatsu T (1983) Two steroidal glycosides, aculeatiside A and B from Solanum aculeatissimum. Phytochemistry 22:733–736Google Scholar
  483. Saiyed Z, Kanga DD (1936) Fruits of Solanum xanthocarpum. Proc Indian Acad Sci 4A:255–260Google Scholar
  484. Saleh M (1973) Steroidal constituents of Solanum arundo. Planta Med 23:377–378PubMedGoogle Scholar
  485. Sander H (1963a) Chemische Differenzierung innerhalb der Art Solanum dulcamara L. Planta Med. 11:303–316Google Scholar
  486. Sander H (1963b) Über Solanum dulcamara L. 7. Mitt.: Abbau von Spirosolanolglykosiden in reifenden Früchten. Planta Med. 11:23–36Google Scholar
  487. Sang S, Xia Z, Mao S, Lao A, Chen Z (2000) Studies on chemical constituents in seed of Allium tuberosum ROTTL. Zhongguo Zhonggyao Zazhi 25:286–288Google Scholar
  488. Sannai A, Fujimori T, Kato K (1982) Isolation of (−)-1, 2-dehydro-α-cyperone and solavetivone from Lycium chinense. Phytochemistry 21:2986–2987Google Scholar
  489. Sarmento da Silva TM, Braz-Filho R, de Carvalho MG, Agra M (2002) 1, 2, 3, 4-Tetrahydro-2-methyl-β-carboline and solavetivone from Solanum jabrense. Biochem Syst Ecol 30:1083–1085Google Scholar
  490. Sarmento da Silva TM, Agra M, Bhattacharyya J (2005) Studies on the alkaloids of Solanum of northeastern Brazil. Rev Brasil Farmacog 15:292–293Google Scholar
  491. Sarquis JI, Coria NA, Aguilar I, Rivera A (2000) Glycoalkaloid content in Solanum species and hybrids from a breeding program for resistance to late blight (Phytophthora infestans). Am J Potato Res 77:295–302Google Scholar
  492. Sato Y, Latham HG Jr (1953) The isolation of diosgenin from Solanum xanthocarpum. J Am Chem Soc 75:6067Google Scholar
  493. Sato Y, Latham HG Jr, Briggs LH, Seelye RN (1957) Conversion of tomatidine and solasodine into neotigogenin and diosgenin and into a common constituent, 5α-22, 25-epoxyfurostan-3β-ol. J Am Chem Soc 79:6089–6090Google Scholar
  494. Sattler E (1912) Beiträge zur Lebensgeschichte der Tomatenpflanze. Tübingen; fide Czapek (1925)Google Scholar
  495. Savchenko T, Whiting P, Germade A, Dinan L (2000) Ecdysteroid agonist and antagonist activities in species of the Solanaceae. Biochem Syst Ecol 28:403–419PubMedGoogle Scholar
  496. Schlittler E, Uehlinger H (1952) Das Sterolalkaloid Solanocapsin. Helv Chim Acta 35:2043–2044Google Scholar
  497. Schmeda-Hirschmann G, Papastergiou F (1994) Sesquiterpenes from Fabiana imbricata. Phytochemistry 36:1439–1442Google Scholar
  498. Schmeda-Hirschmann G, Jordan M, Gerth A, Wilken D, Hormazabal E, Tapia AA (2004) Secondary metabolite content in Fabiana imbricata plants and in vitro cultures. Z Naturforsch 59c:48–54Google Scholar
  499. Schmiedeberg O (1875) [Digitonin] Arch Exp Path 3:18; fide Czapek (1925)Google Scholar
  500. Schneider JA, Nakanishi K (1983) A new class of sweet potato phytoalexins. J Chem Soc Chem Commun 353–355Google Scholar
  501. Schneider JA, Yoshihara K, Nakanishi K (1983) The absolute configuration of (+)-ipomeamarone. J Chem Soc Chem Commun 352–353Google Scholar
  502. Schneider JA, Lee J, Naya Y, Nakanishi K, Oba K, Uritani I (1984) The fate of the phytoalexin ipomeamarone: Furanoterpenes and butenolides from Ceratocystis fimbriata-infected sweet potatoes. Phytochemistry 23:759–764Google Scholar
  503. Schöpf C, Herrmann R (1933) Zur Kenntnis des Solanidins. Ber 66:298–305Google Scholar
  504. Schreiber K (1957) Isolierung von ∆5-Tomatidenol-(3β) und Yamogenin aus Solanum tuberosum. Angew Chem 69:483Google Scholar
  505. Schreiber K (1958a) Die Alkaloide von Solanum dulcamara L. Planta Med. 6:94–97Google Scholar
  506. Schreiber K (1958b) Über das Vorkommen von Solasodinglykosiden in Solanum nigrum L. und ihre industrielle Verwertung. Planta Med 6:435–439Google Scholar
  507. Schreiber K (1963) Über die Alkaloidglykoside knollentragender Solanum-Arten. Kulturpflanze 11:422–450Google Scholar
  508. Schreiber K (1968) Steroid alkaloids: The Solanum group. In: Manske RHF (ed) The alkaloids – chemistry and physiology, vol 10. Academic Press, New York, pp 1–192Google Scholar
  509. Schreiber K, Aurich O (1966) Isolation of secondary alkaloids and 3-hydroxy-5-pregn-16-en-20-one from Lycopersicon pimpinellifolium. Phytochemistry 5:707–712Google Scholar
  510. Schreiber K, Ripperger H (1960) Struktur des Solanocapsins. Experientia 16:536PubMedGoogle Scholar
  511. Schreiber K, Ripperger H (1962) Isolierung von Solanocapsin aus Solanum pseudocapsicum, Solanum capsicastrum und Solanum hendersonii. Z Naturforsch 17b:217–221Google Scholar
  512. Schreiber K, Ripperger H (1968) Isolierung von Jurubin, Neochlorogenin und Paniculogenin aus Solanum torvum. Kulturpflanze 15:199–204Google Scholar
  513. Schulz D, Eilert U, Willker W, Leibfritz D, Ehmke A (1992) Steroidal glycoalkaloids from Solanum triflorum. Abstract Book, 40th Annual Congress on Medicinal Plant Research, Trieste, Italy, p 133Google Scholar
  514. Sembdner G, Schreiber K (1965) Über die Gibberelline von Nicotiana tabacum L. Phytochemistry 41:49–56Google Scholar
  515. Severson RF, Jackson DM, Johnson AW, Sisson VA, Stephenson MG (1991) Ovipositional behaviour of tobacco budworm and tobacco hornworm. Effects of cuticular components from Nicotiana species. ACS Sympos Ser vol 449, American Chemical Society, Washington, DC, pp 264–277Google Scholar
  516. Severson RF, Eckel RVW, Jackson DM, Sisson VA, Stephenson MG (1994) Aphicidal activity of cuticular components from Nicotiana tabacum. ACS Sympos Ser vol 551, American Chemical Society, Washington, DC, pp 172–190Google Scholar
  517. Sharma SC, Chand R, Sati OP, Sharma AK (1983) Oligofurostanosides from Solanum nigrum. Phytochemistry 22:1241–1244Google Scholar
  518. Shchelochkova AP, Vollerner YS, Koshoev KK (1980) Tomatoside A from Lycopersicum esculentum seeds. Khim Prir Soed 533–540Google Scholar
  519. Shih M, Kuc J, Williams EB (1973) Suppression of steroid glycoalkaloid accumulation as related to rishitin accumulation in potato tubers. Phytopathology 63:821–826Google Scholar
  520. Shingu K, Fujii H, Mizuki K, Ueda I, Yahara S, Nohara T (1994) Ergostane glycosides from Petunia hybrida. Phytochemistry 36:1307–1314PubMedGoogle Scholar
  521. Shvets SA, Kintya PK, (1984) Steroid glycosides. Structure of melongoside K from the seeds of Solanum melongena. Khim Prir Soed:668–669Google Scholar
  522. Shvets SA, Kintya PK, Gutsu ON (1994) Steroidal glycosides from seeds of Nicotiana tabacum. I. Structure of nicotianosides A, B, and E. Khim Prir Soed: 737–742Google Scholar
  523. Shvets SA, Latsterdis NV, Kintya PK (1995a) A chemical study on the steroidal glycosides from Atropa belladonna L. seeds. Book of abstracts, 210th ACS National Meeting, Chicago, IL, August 20–24, (Pt 1), AGFD-132Google Scholar
  524. Shvets SA, Kintya PK, Gutsu ON (1995b) Steroidal glycosides from Nicotiana tabacum L. seeds and their biological activity. Book of abstracts, 210th ACS National Meeting, Chicago, IL, August 20–24, (Pt 1), AGFD-161Google Scholar
  525. Shvets SA, Naibi MA, Kintya PK (1995c) Steroidal glycosides from Petunia hybrida. seeds and their biological activity. Book of abstracts, 210th ACS National Meeting, Chicago, IL, August 20–24, (Pt 1), AGFD-163Google Scholar
  526. Shvets SA, Kintya PK, Naibi MA (1995d) Steroidal glycosides from Petunia hybrida seeds. II. Structure of petuniosides I, L and N. Khim Prir Soed:247–252Google Scholar
  527. Shvets SA, Kintya PK, Gutsu ON, Grishkovets VI (1995e) Steroidal glycosides of Nicotiana tabacum seeds. II. Structure of nicotianosides C and F. Khim Prir Soed:396–401Google Scholar
  528. Shvets SA, Latsterdis NV, Kintya PK (1996a) A chemical study on the steroidal glycosides from Atropa belladonna L. seeds. Adv Exp Med Biol 404:475–483PubMedGoogle Scholar
  529. Shvets SA, Gutsu ON, Kintya PK (1996b) Steroidal glycosides from Nicotiana tabacum L. seeds and their biological activity. Adv Exp Med Biol 405:247–257PubMedGoogle Scholar
  530. Shvets SA, Kintya PK, Gutsu ON (1996c) The influence of steroid glycosides from Solanum melongena L. and Nicotiana tabacum L. seeds on the yield capacity and quality of tomato fruits. Special Publication – Royal Society of Chemistry, 179 (Agri-Food Quality):104–106Google Scholar
  531. Silva M, Mancinelli P, Cheul M (1962) Chemical study of Cestrum parqui. J Pharm Sci 51:289PubMedGoogle Scholar
  532. Silva TMS, Batista MM, Câmara CA, Agra MF (2005) Molluscicidal activity of some Brazilian Solanum spp. (Solanaceae) against Biomphalaria glabrata. Ann Trop Med Parasit 99:4119–4125Google Scholar
  533. Silva TMS, Câmara CA, Agra MF, de Carvalho MG, Frana MT, Brandoline SVPB, Paschoal LS, Braz-Filho R (2006) Molluscicidal activity of Solanum spp. of the Northeast of Brazil on Biomphalaria glabrata. Fitoterapia 77:449–452PubMedGoogle Scholar
  534. Sinden SL, Sanford LL, Osman SF (1980) Glycoalkaloids and resistance to the Colorado potato beetle in Solanum chacoense BITTER. Am Potato J 57:331–343Google Scholar
  535. Singh S, Khanna NM, Dhar MM (1974) Solaplumbin, a new anticancer glycoside from Nicotiana plumbaginifolia. Phytochemistry 13:2020–2022Google Scholar
  536. Sinha SC, Ali A, Bagchi A, Sahai M, Ray AB (1987) Physalindicanols, new biogenetic precursors of C28-steroidal lactones from Physalis minima var. indica. Planta Med 53:55–57PubMedGoogle Scholar
  537. Skliar M, Curino A, Milanesi L, Benassati S, Boland R (2000) Nicotiana glauca: Another plant species containing vitamin D3 metabolites. Plant Sci 156:193–199PubMedGoogle Scholar
  538. Smith DB, Roddick JG, Jones JL (2001) Synergism between the potato glycoalkaloids α-chaconine and α-solanine in inhibition of snail feeding. Phytochemistry 57:229–234PubMedGoogle Scholar
  539. Soares MB, Bellintani MC, Ribeiro IM, Tomassini TC, Ribeiro dos Santos R (2003) Inhibition of macrophage activation and lipopolysaccharide-induced death by seco-steroids purified from Physalis angulata L. Europ J Pharmacol 459:107–112Google Scholar
  540. Soltys A, Wallenfels K (1936) Solanin und Solanidin. Ber 69b:811–818Google Scholar
  541. Soulé S, Güntner C, Vázquez A, Argandoña V, Ferreira F, Moyna P (1999) Effect of Solanum glycosides on the aphid Schizaphis graminum. J Chem Ecol 25:369–374Google Scholar
  542. Soulé S, Güntner C, Vázquez A, Argandoña V, Moyna P, Ferreira F (2000) An aphid repellent glycoside from Solanum laxum. Phytochemistry 55:217–222Google Scholar
  543. Spooner DM, Anderson GJ, Jansen RK (1993) Chloroplast DNA evidence for the interrelationships of tomatoes, potatoes, and pepinos (Solanaceae). Am J Bot 80:676–688Google Scholar
  544. Sticher O (2007) Triterpene einschließlich Steroide. In: Hänsel R, Sticher O (eds) Pharmakognosie – Phytopharmazie 8th edn. Springer, Heidelberg, Germany, pp 916–1022Google Scholar
  545. Stoessl A, Unwin CH, Ward EWB (1972) Capsidiol, an antifungal compound from Capsicum frutescens. Phytopathol Z 74:141–152Google Scholar
  546. Stoessl A, Stothers JB, Ward EWB (1975) A 2, 3-dihydroxygermacrene and other stress metabolites of Datura stramonium. J Chem Soc, Chem Comm:431–432Google Scholar
  547. Stoessl A, Stothers JB, Ward, EWB (1976) Sesquiterpenoid stress compounds of the Solanaceae. Phytochemistry 15:855–872Google Scholar
  548. Stürckow B, Löw I (1961) Die Wirkungen einiger Solanaceen-Alkaloidglykoside auf den Kartoffelkäfer. Entomol Expt Appl 4:133–142Google Scholar
  549. Su BN. Gu JQ, Kang YH, Park EJ, Pezzuto JM, Kinghorn AD (2004) Induction of phase II enzyme, quinone reductase, by withanolides and norwithanolides from solanaceous species. Mini-Rev Org Chem 1:115–123Google Scholar
  550. Subbaraju GV, Vanisree M, Rao CV, Sivaramakrishna C, Sridhar P, Jayaprakasam B, Nair MG (2006) Ashwagandhanolide, a bioactive dimeric thiowithanolide isolated from the roots of Withania somnifera. J Nat Prod 69:1790–1792PubMedGoogle Scholar
  551. Sun LX, Fu WW, Li W, Bi KS, Wang MW (2006) Diosgenin glucuronides from Solanum lyratum and their cytoxicity against tumor cell lines. Z Naturforsch 61c:171–176Google Scholar
  552. Suzuki H, Noma M, Kawashima N (1983) Two labdane diterpenoids from Nicotiana setchellii. Phytochemsitry 22:1294–1295Google Scholar
  553. Suzuki Y, Yamaguchi I, Takahashi N (1985) Identification of castasterone and brassinone from immature seeds of Pharbitis purpurea. Agric Biol Chem 49:49–54Google Scholar
  554. Syu WJ, Don MJ, Lee GH, Sun CM (2001) Cytotoxic and novel compounds from Solanum indicum. J Nat Prod 64:1232–1233PubMedGoogle Scholar
  555. Szafranek B, Chrapkowska K, Pawiñska M, Szafranek J (2005) Analysis of leaf surface sesquiterpenes in potato varieties. J Agric Food Chem 53:2817–2822PubMedGoogle Scholar
  556. Szafranek B, Chrapkowska K, Waligóra D, Palavinskas R, Banach A, Szafranek J (2006) Leaf surface sesquiterpene alcohols of the potato (Solanum tuberosum) and their influence on Colorado beetle (Leptinotarsa decemlineata SAY feeding. J Agric Food Chem 54:7729–7734PubMedGoogle Scholar
  557. Tagawa C, Okawa M, Ikeda T, Yoshida T, Nohara T (2003) Homo-cholestane glycosides from Solanum aethiopicum. Tetrahedron Lett 44:4839–4841Google Scholar
  558. Takahashi N, Yokota T, Murofushi N, Tamura S (1969) Structures of gibberellins A26 and A27 in immature seeds of Pharbitis nil. Tetrahedron Lett 2077–2080Google Scholar
  559. Takahashi N, Murofushi N, Yokota T (1972) Gibberellins in immature seed of moonflower (Calonyction aculeatum). Plant Growth Subst., Proc Int Conf, 7th, Springer, New York, pp 175–180Google Scholar
  560. Telek L, Delphin H, Cabanillas E (1977) Solanum mammosum as a source of solasodine in the lowland tropics. Econ Bot 31:120–128Google Scholar
  561. Temme F (1883) fide Baccarini et al. (1965)Google Scholar
  562. Teuscher E, Lindequist U (1994) Biogene Gifte – Biologie, Chemie, Pharmakologie, 2nd edn. Gustav Fischer Stuttgart, GermanyGoogle Scholar
  563. Teuscher E, Melzig MF, Lindequist U (2004) Biogene Arzneimittel, 6th edn. Wissenschaftliche Verlagsgesellschaft, Stuttgart, GermanyGoogle Scholar
  564. Tian RH, Ohmura E, Yoshimitsu H, Nohara T, Matsui M (1996) Cholestane glycosides from Solanum abutiloides. Chem Pharm Bull 44:1119–1121PubMedGoogle Scholar
  565. Tian RH, Ohmura E, Matsui M, Nohara T (1997) Abutiloside A, a 26-acylamino-3β, 16α-dihydroxy-5α-cholestan-22-one glycoside from Solanum abutiloides. Phytochemistry 44:723–726PubMedGoogle Scholar
  566. Tietze LF, Wegner C, Wulff C (1999) First total synthesis and determination of the absolute configuration of the stress factor (+)-hydroxymyoporone. Chem Eur J 5:2885–2889Google Scholar
  567. Tingey WM (1984) Glycoalkaloids as pest resistance factors. Am Potato J 61:157–167Google Scholar
  568. Tingey WM, Mackenzie JD, Gregory P (1978) Total foliar glycoalkaloids and resistance of wild potato species to Empoasca fabae (HARRIS). Am Potato J 55:577–585Google Scholar
  569. Tofern B, Jenett-Siems K, Siems K, Jakupovic J, Eich E (1999) Arcapitins A – C, first dammarane-type triterpenes from the Convolvulaceae. Z Naturforsch 54c:1005–1010Google Scholar
  570. Tohda C, Komatsu K, Kuboyama T (2005) Scientific basis for the anti-dementia drugs of constituents from Ashwagandha (Withania somnifera). J Tradit Med 22 (Suppl 1) 176–182Google Scholar
  571. Tomiyama K, Sakuma T, Ishizaka N, Sato N, Katsui N, Takasugi M, Masamune T (1968) Phytopathology 58:115; fide Stoessl et al. (1983)Google Scholar
  572. Topal U, Sasaki M, Goto M, Hayakawa K (2006) Extraction of lycopene from tomato skin with supercritical carbon dioxide: Effect of operating conditions and solubility analysis. J Agric Food Chem 54:5604–5610PubMedGoogle Scholar
  573. Torres R, Modak B, Faini F (1988) (25R)-Isonuatigenin, an unusual steroidal sapogenin as taxonomic marker in Cestrum parqui and Vestia lycioides. Bol Soc Chil Quim 33:239–241Google Scholar
  574. Trease D, Evans WC (2002) Pharmacognosy, 15th edn. W.B.Saunders, Edinburgh, UK, p 293Google Scholar
  575. Trumbo PR, Ellwood KC (2006) Lutein and zeaxanthin intakes and risk of age-related macular degeneration and cataracts: An evaluation using the Food and Drug Administration’s evidence-based review system for health claims. Am J Clin Nutr 84:971–974PubMedGoogle Scholar
  576. Tsay YH, Silverton JV, Beisler JA, Sato Y (1970) The structure of carpesterol. J Am Chem Soc 92:7005–7006Google Scholar
  577. Tschesche R, Brennecke HR (1980) Side chain functionalization of cholesterol in the biosynthesis of solasodine in Solanum laciniatum. Phytochemistry 19:1449–1451Google Scholar
  578. Tschesche R, Gutwinski H (1975) Steroidsaponine mit mehr als einer Zuckerkette. X. Capsicosid, ein bisdesmosidisches 22-Hydroxyfurostanolglycosid aus den Samen von Capsicum annuum L. Ber 108:265–272Google Scholar
  579. Tschesche R, Richert H (1964) Über Saponine der Spirostanolreihe – XI. Nuatigenin, ein Chologenin-Analogon des Pflanzenreiches. Tetrahedron 20:387–398Google Scholar
  580. Tschesche R, Spindler M (1978) Zur Biogenese des Aza-Oxa-Spiran-Systems der Steroidalkaloide vom Spirosolan-Typ in Solanaceen. Phytochemistry 17:251–255Google Scholar
  581. Tschesche R, Wulff G (1961) Saponine der Spirostanolreihe. VII. Über Digalogenin, ein neues Sapogenin aus den Samen von Digitalis purpurea. Ber 94:2019–2026Google Scholar
  582. Tschesche R, Wulff G (1963) Über Saponine der Spirostanolreihe – IX. Die Konstitution des Digitonins. Tetrahedron 19:621–634Google Scholar
  583. Tschesche R, Goossens B, Töpfer A (1976) Zur Einführung des Stickstoffs und zum gemeinsamen Vorkommen von 25(R)- und 25(S)-Steroidalkaloiden in Solanaceen. Phytochemistry 15:1387–1389Google Scholar
  584. Tukalo EA (1964) Investigation of different varieties of the Solanaceae family for the presence of compounds with steroid structure. Izuch Ispol’z Lekarstv Rastit Resursov SSR (Leningrad: Med.): 288–290Google Scholar
  585. Tutin F, Clewer HWB (1914) Constituents of Solanum angustifolium; isolation of a new gluco-alkaloid, solangustine. J Chem Soc Transact 105:559–576Google Scholar
  586. Tuzson P, Kiss Z (1957) Alkaloids of Solanum. II. Soladulcidine. Acta Chim Acad Sci Hungar 12:31–34Google Scholar
  587. Uegaki R, Fujimori T, Kubo S, Kato K (1983) Sesquiterpenoid stress compounds from Nicotiana rustica inoculated with TMV. Phytochemistry 22:1193–1195Google Scholar
  588. Uegaki R, Fujimori T, Kubo S, Kato K (1985) Stress compounds from Nicotiana rustica inoculated with TMV. Phytochemistry 24:2445–2447Google Scholar
  589. Uegaki R, Kubo S, Fujimori T (1988) Stress compounds in the leaves of Nicotiana undulata induced by TMV inoculation. Phytochemistry 27:365–368Google Scholar
  590. Usubillaga AN, Meccia G (1987) Steroidal sapogenins from Solanum scorpioideum. J Nat Prod 50:636–641Google Scholar
  591. Usubillaga A, Aziz I, Tettamanzi MC, Waibel R, Achenbach H (1997) Steroidal alkaloids from Solanum sycophanta. Phytochemistry 44:537–543Google Scholar
  592. Usubillaga A, Khouri N, Baptista JC, Bahsas A (2005) New Acnistins from Acnistus arborescens. Rev Latinoam Quim 33:121–127Google Scholar
  593. Van Gelder WMJ, Scheffer JJC (1991) Transmission of steroidal glycoalkaloids from Solanum vernei to the cultivated potato. Phytochemistry 30:165–168Google Scholar
  594. Vázquez A, Ferreira F, Moyna P, Kenne L (1999) Structural elucidation of glycosides from Solanum amygdalifolium. Phytochem Anal 10:194–197Google Scholar
  595. Veleiro AS, Trocca CE, Burton G, Oberti (1992) A phenolic withanolide from Jaborosa leucotricha. Phytochemistry 31:2550–2551Google Scholar
  596. Veleiro AS, Oberti JC, Burton G (2005) Chemistry and bioactivity of withanolides from South American Solanaceae. In: Atta-ur-Rahman (ed) Studies in natural products chemistry, vol 32 (part L). Elsevier, Amsterdam, NL, pp 1019–1052Google Scholar
  597. Veras ML, Bezerra MZB, Lemos TLG, Uchoa DEA, Braz-Filho R, Chai HB, Cordell GA, Pessoa ODL, (2004a) Cytotoxic withaphysalins from the leaves of Acnistus arborescens. J Nat Prod 67:710–713PubMedGoogle Scholar
  598. Veras ML, Bezerra MZB, Braz-Filho R, Pessoa ODL, Montenegro EC, Pessoa CdO, de Moraes MO, Costa-Lotufo LV (2004b) Cytotoxic epimeric withaphysalins from leaves of Acnistus arborescens. Planta Med 70:551–555PubMedGoogle Scholar
  599. Verdonk JC, de Vos CHR, Verhoeven HA, Haring MA, van Tunen AJ, Schuurink RC (2003) Regulation of floral scent production in petunia revealed by targeted metabolomics. Phytochemistry 62:997–1008PubMedGoogle Scholar
  600. Vidal Aldana M, Noguiera Lima C (1999) Isolation and characterization of a glycoside from fluid extracts of Solanum americanum MILL. Afinidad 56:393–396Google Scholar
  601. Vijayan P, Prashanth HC, Vijayaraj P, Dhanaraj SA, Badami S, Suresh B (2003) Hepatoprotective effect of the total alkaloid fraction of Solanum pseudocapsicum leaves. Pharmaceut Biol 41:443–448Google Scholar
  602. Volkov RA, Komarova NY, Panchuk II, Hemleben V (2003) Molecular evolution of rDNA external transcribed spacer and phylogeny of sect. Petota (genus Solanum). Mol Phylogenet Evol 29:187–202PubMedGoogle Scholar
  603. Volynets AP, Shukanov VP, Goncharik NN (2002) Influence of steroid glycosides on grain productivity and sowing qualities of spring wheat seeds (Triticum aestivum L.). Vestsi Natsy Akad Navuk Belarusi, Ser Biyalag Navuk (3):10–12Google Scholar
  604. Wagner G (1999) Leaf surface chemistry. In: Davis DL, Nielsen MT (eds) Tobacco – production, chemistry and technology. Blackwell Science, Oxford, UK, pp 292–303Google Scholar
  605. Wahlberg I, Eklund AM (1992) Cembranoids, pseudopteranoids, and cubitanoids of natural occurrence. In: Zechmeister L, Herz W, Grisebach H, Kirby GW (eds) Progress in the chemistry of organic natural products, vol 59. Springer Verlag, Wien/A, pp 141–294Google Scholar
  606. Wahlberg I, Ringberger T (1999) Smokeless tobacco. In: Davis DL, Nielsen MT (eds) Tobacco – production, chemistry and technology. Blackwell Science, Oxford, UK, pp 452–460Google Scholar
  607. Wahlberg I, Wallin I, Narbonne C, Nishida T, Enzell CR (1981) Note on the stereostructure of thunbergol (isocembrol) and 4-epiisocembrol. Acta Chem Scand B35:65–68Google Scholar
  608. Waiss A Jr, Elliger CA, Haddon WF, Benson M (1993) Insect inhibitory steroidal saccharide esters from Physalis peruviana. J Nat Prod 56:1365–1372Google Scholar
  609. Wallin I, Narbonne C, Wahlberg I, Nishida T, Enzell CR (1980) Two new acyclic diterpenoids from Nicotiana sylvestris. Acta Chem Scand B34:391–396Google Scholar
  610. Wang LT, Wang AY, Hsieh CW, Chen CY, Sung HY (2005) Vacuolar invertases in sweet potato: Molecular cloning, characterization, and Analysis of gene expression. J Agric Food Chem 53:3672–3678PubMedGoogle Scholar
  611. Wang Y, Kays SJ (2002) Sweetpotato volatile chemistry in relation to sweetpotato weevil (Cylas formicarius) behaviour. J Am Soc Horticult Sci 127:656–662Google Scholar
  612. Wanyonyi AW, Chhabra SC, Mkoji G, Eilert U, Njue WM (2002) Bioactive steroidal alkaloid glycosides from Solanum aculeastrum. Phytochemistry 59:79–84PubMedGoogle Scholar
  613. Wanyonyi AW, Tarus PK, Chhabra SC (2003) A novel steroidal alkaloid from Solanum aculeastrum. Bull Chem Soc Ethiopia 17:61–66Google Scholar
  614. Ward EWB, Stoessl A (1972) Detoxification of capsidiol, an antifungal compound from peppers. Phytopathology 62:1186–1187Google Scholar
  615. Weeks WW (1999) Relationship between leaf chemistry and organoleptic properties of tobacco smoke. In: Davis DL, Nielsen MT (eds) Tobacco – production, chemistry and technology. Blackwell Science, Oxford, UK, pp 304–312Google Scholar
  616. Weiler EW, Krüger H, Zenk MH (1980) Radioimmunoassay for the determination of the steroidal alkaloid solasodine and related compounds in living plants and herbarium specimens. Planta Med 39:112–124Google Scholar
  617. Weiss D, van der Luit A, Knegt E, Vermeer E, Mol JNM, Kooter JM (1995) Identification of endogenous gibberellins in petunia flower: induction of anthocyanin biosynthetic gene expression and the antagonistic effect of abscisic acid. Plant Physiol 107:695–702PubMedGoogle Scholar
  618. Weissenberg M, Klein M, Meisner J, Ascher KRS (1986) Larval growth inhibition of the spiny bollworm, Earias insulana, by some steroidal secondary plant compounds. Entomol Exp Appl 42:213–217Google Scholar
  619. Weissenberg M, Levy A, Wasserman RH (1993) Solanum glaucophyllum DESF. (duraznillo blanco): In vitro culture and the production of steroidal secondary metabolites. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 21, medicinal and aromatic plants IV, Springer, Berlin, Germany, pp 352–370Google Scholar
  620. Weissenberg M, Levy A, Svoboda JA, Ishaaya I (1998) The effect of some Solanum steroidal alkaloids and glycoalkaloids on larvae of the red flour beetle, Tribolium castaneum, and the tobacco hornworm, Manduca sexta. Phytochemistry 47:203–209PubMedGoogle Scholar
  621. Weyerstahl P, Christiansen C, Marschall H (1992) Isolation and synthesis of isohumbertiol, the first naturally occurring sesquiterpene alcohol with a humbertiane skeleton. Liebigs Ann Chem 1325–1328Google Scholar
  622. Whitehead IM, Threlfall DR, Ewing DF (1989) 5-epi-Aristolochene is a common precursor of the sesquiterpenoid phytoalexins capsidiol and debneyol. Phytochemistry 28:775–779Google Scholar
  623. Wijayanti L, Kobayashi M, Fujioka S, Yoshizawa K, Sakurai A (1995) Identification and quantification of abscisic acid, indole-3-acetic acid and gibberellins in phloem exudates of Pharbitis nil. Biosci Biotech Biochem 59:1533–1535Google Scholar
  624. Willstätter R, Escher HH (1911) Die Farbstoffe der Tomate. Z Physiol Chem 64:47–61Google Scholar
  625. Willuhn G (1966) Untersuchungen zur chemischen Differenzierung bei Solanum dulcamara L. I. Genetische Fixierung der unterschiedlichen Steroidalkaloidführung. Planta Med 14:408–420Google Scholar
  626. Willuhn G (1967) Untersuchungen zur chemischen Differenzierung bei Solanum dulcamara L. II. Der Steroidgehalt in Früchten verschiedener Entwicklungsstadien der Tomatidenol- und Soladulcidin-Sippe. Planta Med 15:58–73PubMedGoogle Scholar
  627. Willuhn G, Koestens J (1974) Solanum dulcamara. Triterpenoids and sterols from the petroleum ether extract of the leaves. Planta Med 25:115–137Google Scholar
  628. Willuhn G, Koestens J (1975) Quantitative distribution of sterols and sterol derivatives in organs of Solanum dulcamara. Phytochemistry 14:2055–2058Google Scholar
  629. Willuhn G, Koethe U (1981) Spirostanol-Gehalt und -Variabilität in oberirdischen Organen von Solanum dulcamara L. Dtsch Apoth Ztg 121:235–239Google Scholar
  630. Wilson BJ, Yang DT, Boyd MR (1970) Toxicity of mould-damaged sweet potatoes (Ipomoea batatas). Nature (London) 227:521–522PubMedGoogle Scholar
  631. Wilson DD, Son KC, Severson RF, Kays SJ, (1990) Effect of a pentacyclic triterpene from sweet potato storage roots on oviposition by the sweetpotato weevil (Coleoptera: Curculionidae). Environ Entomol 19:1663–1665Google Scholar
  632. Windaus A, Brunken J (1925) Über das Vorkommen von Gitogenin in Digitalis-Blättern. Z Physiol Chem 143:33–47Google Scholar
  633. Wolters B (1964) Beziehungen zwischen Struktur und antibiotischer Wirkung bei einigen Steroidalkaloiden. Arch Pharm 297:748–754Google Scholar
  634. Wolters B (1968) Saponine als pflanzliche Pilzabwehrstoffe. Planta 79:77–83Google Scholar
  635. Yahara S, Morooka M, Ikeda M, Yamasaki M, Nohara T (1986) Two new steroidal glucuronides from Solanum lyratum. Planta Med 52:496–498PubMedGoogle Scholar
  636. Yahara S, Izumitani Y, Nohara T (1988) A novel acyclic diterpene glycoside, capsianside A, from Capsicum annuum var. fasciculatum. Tetrahedron Lett 29:1943–1946Google Scholar
  637. Yahara S, Kobayashi N, Izumitani Y, Nohara T (1991) New acyclic diterpene glycosides, capsianosides VI, G and H from the leaves and stems of Capsicum annuum L. Chem Pharm Bull 39:3258–3260Google Scholar
  638. Yahara S, Ura T, Sakamoto C, Nohara T (1994) Steroidal glycosides from Capsicum annuum. Phytochemistry 37:831–835PubMedGoogle Scholar
  639. Yahara S, Yamashita T, Nozawa N (nee Fujimura), Nohara T (1996a) Steroidal glycosides from Solanum torvum. Phytochemistry 43:1069–1074Google Scholar
  640. Yahara S, Nakamura T, Someya Y, Matsumoto T, Yamashita T, Nohara T (1996b) Steroidal glycosides, indiosides A – E, from Solanum indicum. Phytochemistry 43:1319–1323Google Scholar
  641. Yahara S, Uda N, Nohara T (1996c) Lycoperosides A – C, three stereoisomeric 23-acetoxyspirosolan-3β-ol-β-lycotetraosides from Lycopersicon esculentum. Phytochemistry 42:169–172Google Scholar
  642. Yahara S, Uda N, Yoshio E, Yae E (2004) Steroidal alkaloid glycosides from tomato (Lycopersicon esculentum). J Nat Prod 67:500–502PubMedGoogle Scholar
  643. Yamashita T, Matsumoto T, Yahara S, Yoshida N, Nohara T (1991) Structures of two new steroidal glycosides, soladulcosides A and B from Solanum dulcamara. Chem Pharm Bull 39:1626–1628PubMedGoogle Scholar
  644. Yang DTC, Wilson BJ, Harris TM (1971) The structure of ipomeamaranol: A new toxic furanosesquiterpene from moldy sweet potatoes. Phytochemistry 10:1653–1654Google Scholar
  645. Yarden A, Lavie D (1962) Constituents of Withania somnifera. I. Functional groups of withaferin. J Chem Soc 2925–2927Google Scholar
  646. Ye WC, Wang H, Zhao SX, Che CT (2001) Steroidal glycoside and glycoalkaloid from Solanum lyratum. Biochem Syst Ecol 29:421–423PubMedGoogle Scholar
  647. Yokose T, Katamoto K, Park S, Matsuura H, Yoshihara T (2004) Anti-fungal sesquiterpenoid from the root exudate of Solanum abutiloides. Biosci Biotechnol Agrochem 68:2640–2642Google Scholar
  648. Yokota T, Takahashi N, Murofushi N, Tamura S (1969a) Structures of new gibberellin glucosides in immature seeds of Pharbitis nil. Tetrahedron Lett 2081–2084Google Scholar
  649. Yokota T, Takahashi N, Murofushi N, Tamura S (1969b) Isolation of gibberellin A26 and A27 and their glucosides from immature seeds of Pharbitis nil. Planta 87:180–184Google Scholar
  650. Yokota T, Murofushi N, Takahashi N (1970) Structure of new gibberellin glucoside in immature seeds of Pharbitis nil. Tetrahedron Lett 1489–1491Google Scholar
  651. Yokota T, Murofushi N, Takahashi N, Tamura S (1971a) Gibberellins in immature seeds of Pharbitis nil. II. Isolation and structures of novel gibberellins, gibberellins A26 and A27. Agric Biol Chem 35:573–582Google Scholar
  652. Yokota T, Murofushi N, Takahashi N, Tamura S (1971b) Gibberellins in immature seeds of Pharbitis nil. III. Isolation and structures of gibberellin glucosides. Agric Biol Chem 35:583–595Google Scholar
  653. Yokota T, Murofushi N, Takahashi N, Katsumi M (1971c) Gibberellins in immature seeds of Pharbitis nil. IV. Biological activities of gibberellins and their glucosides in Pharbitis nil. Phytochemistry 10:2943–2949Google Scholar
  654. Yokota T, Sato T, Takeuchi Y, Nomura T, Uno K, Watanabe T, Takatsuto S (2001) Roots and shoots of tomato produce 6-deoxo-28-cathasterone, 6-deoxo-28-nortyphasterol and 6-deoxo-28-norcastasterone. Phytochemistry 58:233–238PubMedGoogle Scholar
  655. Yoshimitsu H, Nishida M, Nohara T (2000) Cholestane glycosides from Solanum abutiloides. III. Chem Pharm Bull 48:556–558PubMedGoogle Scholar
  656. Yoshimitsu H, Nishida M, Yoshida M, Nohara T (2002) Four new 26-aminocholestane-type glycosides from Solanum abutiloides. Chem Pharm Bull 50:284–286PubMedGoogle Scholar
  657. Yoshimitsu H, Nishida M, Nohara T (2003) Steroidal glycosides from the fruits of Solanum abutiloides. Phytochemistry 64:1361–1366PubMedGoogle Scholar
  658. Yoshizaki M, Matsushita S, Fujiwara Y, Ikeda T, Ono M, Nohara T (2005) Tomato new sapogenols, isoesculeogenin A and esculeogenin B. Chem Pharm Bull 53:839–840PubMedGoogle Scholar
  659. Zacharius RM, Osman SF (1977) Glycoalkaloids in tissue culture of Solanum species. Dehydrocommersonine from cultured roots of Solanum chacoense. Plant Sci Lett 10:283–287Google Scholar
  660. Zamilpa A, Tortoriello J, Navarro V, Delgado C, Alvarez L (2002) Five new steroidal saponins from Solanum chrysotrichum leaves and their antimycotic activity. J Nat Prod 65:1815–1819PubMedGoogle Scholar
  661. Zechmeister L, Cholnoky LV (1927) Über Paprika-Farbstoffe. Liebigs Ann 454:54–71Google Scholar
  662. Zechmeister L, Cholnoky LV (1930) Zum Stand sauerstoffhaltiger Carotenoide in Pflanzen. Vorläufige Mitteilung. Z Physiol Chem 189:159–161Google Scholar
  663. Zechmeister L, Cholnoky LV (1936) Lycoxanthin und Lycophyll, zwei natürliche Derivate des Lycopins. Ber 69B:422–429Google Scholar
  664. Zhao J, Nakamura N, Hattori M, Kuboyama T, Tohda C, Komatsu K (2002) Withanolide derivatives from the roots of Withania somnifera and their neurite outgrowth activities. Chem Pharm Bull 50:760–765PubMedGoogle Scholar
  665. Zhou X, He X, Wang G, Gao H, Zhou G, Ye W, Yao X (2006) Steroidal saponins from Solanum nigrum. J Nat Prod 69:1158–1163PubMedGoogle Scholar
  666. Zhu XH, Takagi M, Ikeda T, Midzuki K, Nohara T (2001a) Withanolide-type steroids from Solanum cilistum. Phytochemistry 56:741–745PubMedGoogle Scholar
  667. Zhu XH, Ando J, Takagi M, Ikeda T, Nohara T (2001b) Six new withanolide-type steroids from the leaves of Solanum cilistum. Chem Pharm Bull 49:161–164PubMedGoogle Scholar
  668. Zhu XH, Ando J, Takagi M, Ikeda T, Yoshimitsu A, Nohara T (2001c) Four novel withanolide-type steroids from the leaves of Solanum cilistum. Chem Pharm Bull 49:1440–1443PubMedGoogle Scholar
  669. Zhu XH, Tsumagari H, Honbu T, Ikeda T, Ono M, Nohara T (2001d) Peculiar steroidal saponins with opened E-ring from Solanum genera plants. Tetrahedron Lett 42: 8043–8046Google Scholar
  670. Zwenger C, Kind A (1859) [Solanidin] Liebigs Ann Chem 109:244; fide Czapek (1925)Google Scholar
  671. Zwenger C, Kind A (1861) [Solanidin] Liebigs Ann Chem 118:129; fide Czapek (1925)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Personalised recommendations