Efficient Computation in Groups Via Compression

  • Markus Lohrey
  • Saul Schleimer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4649)


We study the compressed word problem: a variant of the word problem for finitely generated groups where the input word is given by a context-free grammar that generates exactly one string. We show that finite extensions and free products preserve the complexity of the compressed word problem. Also, the compressed word problem for a graph group can be solved in polynomial time. These results allow us to obtain new upper complexity bounds for the word problem for certain automorphism groups and group extensions.


Polynomial Time Automorphism Group Word Problem Polynomial Time Algorithm Free Product 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baudisch, A.: Subgroups of semifree groups. Acta Math. Acad. Sci. Hungar. 38, 19–28 (1981)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Baumslag, G., Cannonito, F.B., Miller III, C.F.: Infinitely generated subgroups of finitely presented groups. Math. Z. 153(2), 117–134 (1977)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Beaudry, M., McKenzie, P., Péladeau, P., Thérien, D.: Finite monoids: From word to circuit evaluation. SIAM J. Comput. 26(1), 138–152 (1997)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Brady, N., Meier, J.: Connectivity at infinity for right angled Artin groups. Trans. Amer. Math. Soc. 353, 117–132 (2001)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Cannonito, F.B., Gatterdam, R.W.: The word problem and power problem in 1-relator groups are primitive recursive. Pacific J. Math. 61(2), 351–359 (1975)MATHMathSciNetGoogle Scholar
  6. 6.
    Cockcroft, W.H.: The word problem in a group extension. Quart. J. Math. Oxford Ser. 2(2), 123–134 (1951)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Crisp, J., Wiest, B.: Embeddings of graph braid and surface groups in right-angled Artin groups and braid groups. Algebr. Geom. Topol. 4, 439–472 (2004)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Diekert, V.: Combinatorics on Traces. LNCS, vol. 454. Springer, Heidelberg (1990)MATHGoogle Scholar
  9. 9.
    Diekert, V.: Word problems over traces which are solvable in linear time. Theoret. Comput. Sci. 74, 3–18 (1990)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Diekert, V., Rozenberg, G. (eds.): The Book of Traces. World Scientific, Singapore (1995)Google Scholar
  11. 11.
    Droms, C.: Graph groups, coherence and three-manifolds. J. Algebra 106(2), 484–489 (1985)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Epstein, D.B.A., Cannon, J.W., Holt, D.F., Levy, S.V.F., Paterson, M.S., Thurston, W.P.: Word processing in groups. Jones and Bartlett, Boston (1992)MATHGoogle Scholar
  13. 13.
    Gasieniec, L., Karpinski, M., Plandowski, W., Rytter, W.: Efficient algorithms for Lempel-Ziv encoding (extended abstract). In: Karlsson, R., Lingas, A. (eds.) SWAT 1996. LNCS, vol. 1097, pp. 392–403. Springer, Heidelberg (1996)Google Scholar
  14. 14.
    Green, E.R.: Graph Products of Groups. PhD thesis, The University of Leeds (1990)Google Scholar
  15. 15.
    Hagenah, C.: Gleichungen mit regulären Randbedingungen über freien Gruppen. PhD thesis, University of Stuttgart, Institut für Informatik (2000)Google Scholar
  16. 16.
    Ibarra, O.H., Moran, S.: Probabilistic algorithms for deciding equivalence of straight-line programs. J. Assoc. Comput. Mach. 30(1), 217–228 (1983)MATHMathSciNetGoogle Scholar
  17. 17.
    Kapovich, I., Myasnikov, A., Schupp, P., Shpilrain, V.: Generic-case complexity, decision problems in group theory, and random walks. J. Algebra 264(2), 665–694 (2003)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Laurence, M.R.: A generating set for the automorphism group of a graph group. J. London Math. Soc (2) 52(2), 318–334 (1995)MATHMathSciNetGoogle Scholar
  19. 19.
    Lifshits, Y.: Processing compressed texts: a tractability border. In: Proc. CPM 2007. Springer, Heidelberg (to appear, 2007)Google Scholar
  20. 20.
    Lipton, R.J., Zalcstein, Y.: Word problems solvable in logspace. J. Assoc. Comput. Mach. 24(3), 522–526 (1977)MATHMathSciNetGoogle Scholar
  21. 21.
    Lohrey, M.: Word problems and membership problems on compressed words. SIAM J. Comput. 35(5), 1210–1240 (2006)MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Lyndon, R.C., Schupp, P.E.: Combinatorial Group Theory. Springer, Heidelberg (1977)MATHGoogle Scholar
  23. 23.
    Miyazaki, M., Shinohara, A., Takeda, M.: An improved pattern matching algorithm for strings in terms of straight-line programs. In: Hein, J., Apostolico, A. (eds.) Combinatorial Pattern Matching. LNCS, vol. 1264, pp. 1–11. Springer, Heidelberg (1997)Google Scholar
  24. 24.
    Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, London, UK (1994)MATHGoogle Scholar
  25. 25.
    Plandowski, W.: Testing equivalence of morphisms on context-free languages. In: van Leeuwen, J. (ed.) ESA 1994. LNCS, vol. 855, pp. 460–470. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  26. 26.
    Plandowski, W., Rytter, W.: Complexity of language recognition problems for compressed words. In: Jewels are Forever, Contributions on Theoretical Computer Science in Honor of Arto Salomaa, pp. 262–272. Springer, Heidelberg (1999)Google Scholar
  27. 27.
    Rips, E., Sela, Z.: Canonical representatives and equations in hyperbolic groups. Invent. Math. 120, 489–512 (1995)MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Schleimer, S.: Polynomial-time word problems. In: Commentarii Mathematici Helvetici (to appear)Google Scholar
  29. 29.
    Servatius, H.: Automorphisms of graph groups. J. Algebra 126(1), 34–60 (1989)MATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Simon, H.-U.: Word problems for groups and contextfree recognition. In: Proc. FCT 1979, pp. 417–422. Akademie-Verlag (1979)Google Scholar
  31. 31.
    Stillwell, J.: Classical Topology and Combinatorial Group Theory. Springer, Heidelberg (1995)Google Scholar
  32. 32.
    Wrathall, C.: The word problem for free partially commutative groups. J. Symbolic Comput. 6(1), 99–104 (1988)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Markus Lohrey
    • 1
  • Saul Schleimer
    • 2
  1. 1.Universität Stuttgart, FMIGermany
  2. 2.School of Mathematics and Statistics, Rutgers University, Mathematics Department, New Brunswick, New JerseyUSA

Personalised recommendations