Equivalence Problems for Circuits over Sets of Natural Numbers

  • Christian Glaßer
  • Katrin Herr
  • Christian Reitwießner
  • Stephen Travers
  • Matthias Waldherr
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4649)

Abstract

We investigate the complexity of equivalence problems for { ∪ , ∩ , , + ,×}-circuits computing sets of natural numbers. These problems were first introduced by Stockmeyer and Meyer (1973). We continue this line of research and give a systematic characterization of the complexity of equivalence problems over sets of natural numbers. Our work shows that equivalence problems capture a wide range of complexity classes like NL, C=L, P,\({\rm \Pi^P_{2}}\), PSPACE, NEXP, and beyond. McKenzie and Wagner (2003) studied related membership problems for circuits over sets of natural numbers. Our results also have consequences for these membership problems: We provide an improved upper bound for the case of { ∪ , ∩ , , + ,×}-circuits.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allender, E.: Making computation count: Arithmetic circuits in the nineties. SIGACT NEWS 28(4), 2–15 (1997)CrossRefGoogle Scholar
  2. 2.
    Breunig, H.: The complexity of membership problems for circuits over sets of positive numbers. In: Proceedings 16th International Symposium on Fundamentals of Computation Theory. LNCS, Springer, Heidelberg (to appear, 2007)Google Scholar
  3. 3.
    Ko, K.: Some observations on the probabilistic algorithms and NP-hard problems. Information Processing Letters 14(1), 39–43 (1982)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Meyer, A.R., Stockmeyer, L.J.: The equivalence problem for regular expressions with squaring requires exponential time. In: Proceedings 13th Symposium on Switching and Automata Theory, pp. 125–129. IEEE Computer Society Press, Los Alamitos (1972)CrossRefGoogle Scholar
  5. 5.
    McKenzie, P., Wagner, K.W.: The complexity of membership problems for circuits over sets of natural numbers. In: Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp. 571–582. Springer, Heidelberg (2003)Google Scholar
  6. 6.
    Schönhage, A.: On the power of random access machines. In: ICALP, pp. 520–529 (1979)Google Scholar
  7. 7.
    Stockmeyer, L.J., Meyer, A.R.: Word problems requiring exponential time. In: Proceedings 5th ACM Symposium on the Theory of Computing, pp. 1–9. ACM Press, New York (1973)CrossRefGoogle Scholar
  8. 8.
    Sudborough, I.H.: On the tape complexity of deterministic context-free languages. Journal of the ACM 25(3), 405–414 (1978)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Travers, S.: The complexity of membership problems for circuits over sets of integers. Theoretical Computer Science 369(1), 211–229 (2006)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Wagner, K.: The complexity of problems concerning graphs with regularities. In: Proceedings Mathematical Foundations of Computer Science. LNCS, vol. 176, pp. 544–552. Springer, Heidelberg (1984)Google Scholar
  11. 11.
    Wagner, K.W., Wechsung, G.: On the boolean closure of NP. In: Budach, L. (ed.) FCT 1985. LNCS, vol. 199, pp. 485–493. Springer, Heidelberg (1985)Google Scholar
  12. 12.
    Yang, K.: Integer circuit evaluation is PSPACE-complete. In: IEEE Conference on Computational Complexity, pp. 204–213. IEEE Computer Society Press, Los Alamitos (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Christian Glaßer
    • 1
  • Katrin Herr
    • 1
  • Christian Reitwießner
    • 1
  • Stephen Travers
    • 1
  • Matthias Waldherr
    • 1
  1. 1.Julius-Maximilians-Universität Würzburg, Theoretische InformatikGermany

Personalised recommendations