Planarity, Determinants, Permanents, and (Unique) Matchings

  • Samir Datta
  • Raghav Kulkarni
  • Nutan Limaye
  • Meena Mahajan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4649)


We explore the restrictiveness of planarity on the complexity of computing the determinant and the permanent, and show that both problems remain as hard as in the general case, i.e. GapL and #P complete. On the other hand, both bipartite planarity and bimodal planarity bring the complexity of permanents down (but no further) to that of determinants. The permanent or the determinant modulo 2 is complete for ⊕L, and we show that parity of paths in a layered grid graph (which is bimodal planar) is also complete for this class. We also relate the complexity of grid graph reachability to that of testing existence/uniqueness of a perfect matching in a planar bipartite graph.


Bipartite Graph Planar Graph Perfect Match Adjacency Matrix Directed Acyclic Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allender, E.: Arithmetic circuits and counting complexity classes. In: Krajicek, J. (ed.) Complexity of Computations and Proofs, Quaderni di Matematica, vol. 13, pp. 33–72. Seconda Universita di Napoli (2004), An earlier version appeared in the Complexity Theory Column, SIGACT News 28, vol. 4, pp. 2–15 (December 1997)Google Scholar
  2. 2.
    Allender, E., Barrington, D.A.M., Chakraborty, T., Datta, S., Roy, S.: Grid graph reachability problems. In: Proceedings of 21st IEEE Conference on Computational Complexity, pp. 299–313. IEEE Computer Society Press, Los Alamitos (2006)Google Scholar
  3. 3.
    Allender, E., Beals, R., Ogihara, M.: The complexity of matrix rank and feasible systems of linear equations. Computational Complexity 8(2), 99–126 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Allender, E., Datta, S., Roy, S.: The directed planar reachability problem. In: Ramanujam, R., Sen, S. (eds.) FSTTCS 2005. LNCS, vol. 3821, pp. 238–249. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Allender, E., Mahajan, M.: The complexity of planarity testing. Information and Computation 189(1), 117–134 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Allender, E., Rheinhardt, K., Zhou, S.: Isolation, matching and counting: uniform and nonuniform upper bounds. Journal of Computer and System Sciences 59, 164–181 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Barrington, D.: Bounded-width polynomial size branching programs recognize exactly those languages in NCo. Journal of Computer and System Sciences 38, 150–164 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Barrington, D.A.M.: Grid graph reachability problems. Talk presented at Dogstuhl Seminar on Complexity of Boolean funcions, Seminar Number 02121 (2002)Google Scholar
  9. 9.
    Bourke, C., Tewari, R., Vinodchandran, N.V.: Directed planar reachability is in unambiguous logspace. In: Proceedings of IEEE Conference on Computational Complexity CCC 2007 (to appear)Google Scholar
  10. 10.
    Chakraborty, T., Datta, S.: One-input-face MPCVP is hard for L, but in LogDCFL. In: Arun-Kumar, S., Garg, N. (eds.) FSTTCS 2006. LNCS, vol. 4337, Springer, Heidelberg (2006)Google Scholar
  11. 11.
    Chandra, A., Stockmeyer, L., Vishkin, U.: Constant depth reducibility. SIAM Journal on Computing 13(2), 423–439 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Cook, S.A., McKenzie, P.: Problems complete for L. Journal of Algorithms 8, 385–394 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Damm, C.: DET=L(#L). Technical Report Informatik–Preprint 8, Fachbereich Informatik der Humboldt–Universität zu Berlin (1991)Google Scholar
  14. 14.
    Delcher, A.L., Kosaraju, S.R.: An NC algorithm for evaluating monotone planar circuits. SIAM Journal of Computing 24(2), 369–375 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Dyer, M.E., Frieze, A.M.: Planar 3DM is NP-complete. J. Algorithms 7(2), 174–184 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Hansen, K.: Constant width planar computation characterizes ACC0. In: Diekert, V., Habib, M. (eds.) STACS 2004. LNCS, vol. 2996, pp. 44–55. Springer, Heidelberg (2004)Google Scholar
  17. 17.
    Hertrampf, U., Reith, S., Vollmer, H.: A note on closure properties of logspace MOD classes. Information Processing Letters 75(3), 91–93 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Hoang, T.M., Thierauf, T., Mahajan, M.: On the bipartite unique perfect matching problem. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051, pp. 453–464. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  19. 19.
    Hunt III, H.B., Marathe, M.V., Radhakrishnan, V., Stearns, R.E.: The complexity of planar counting problems. SIAM Journal on Computing 27(4), 1142–1167 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Kulkarni, R., Mahajan, M.: Seeking a vertex of the planar matching polytope in nc. In: Albers, S., Radzik, T. (eds.) ESA 2004. LNCS, vol. 3221, pp. 472–483. Springer, Heidelberg (2004)Google Scholar
  21. 21.
    Mahajan, M., Subramanya, P.R., Vinay, V.: The combinatorial approach yields an NC algorithm for computing Pfaffians. Discrete Applied Mathematics 143(1-3), 1–16 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Mahajan, M., Vinay, V.: Determinant: combinatorics, algorithms, complexity. Chicago Journal of Theoretical Computer Science, 5 (December 1997),
  23. 23.
    Mohar, B., Thomassen, C.: Graphs on Surfaces. John Hopkins University Press, Maryland (2001)zbMATHGoogle Scholar
  24. 24.
    Reingold, O.: Undirected st-connectivity in logspace. In: Proc. 37th STOC, pp. 376–385 (2005)Google Scholar
  25. 25.
    Reinhardt, K., Allender, E.: Making nondeterminism unambiguous. SIAM J. Comp. 29, 1118–1131 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Toda, S.: Counting problems computationally equivalent to the determinant. Technical Report CSIM 91-07, Dept. of Comp. Sc. & Information Mathematics, Univ. of Electro-Communications, Chofu-shi, Tokyo (1991)Google Scholar
  27. 27.
    Vadhan, S.: The complexity of counting in sparse, regular, and planar graphs. SIAM Journal on Computing 31(2), 398–427 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Valiant, L.G.: The complexity of computing the permanent. Theoretical Computer Science 8, 189–201 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Valiant, L.G.: Why is boolean complexity theory difficult? In: Paterson, M.S. (ed.) Boolean Function Complexity. London Mathematical Society Lecture Notes Series, vol. 169, Cambridge University Press, Cambridge (1992)Google Scholar
  30. 30.
    Vazirani, V.: NC algorithms for computing the number of perfect matchings in K 3,3-free graphs and related problems. Information and Computation 80(2), 152–164 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Vinay, V.: Semi-unboundedness and complexity classes. PhD thesis, Indian Institute of Science, Bangalore (July 1991)Google Scholar
  32. 32.
    Xia, M., Zhao, W.: #3-regular bipartite planar vertex cover is #P-complete. In: Cai, J.-Y., Cooper, S.B., Li, A. (eds.) TAMC 2006. LNCS, vol. 3959, pp. 356–364. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  33. 33.
    Yang, H.: An NC algorithm for the general planar monotone circuit value problem. In: Proceedings of 3rd IEEE Symposium on Parallel and Distributed Processing, pp. 196–203. IEEE Computer Society Press, Los Alamitos (1991)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Samir Datta
    • 1
  • Raghav Kulkarni
    • 2
  • Nutan Limaye
    • 3
  • Meena Mahajan
    • 3
  1. 1.Chennai Mathematical Institute, Siruseri, Chennai 603 103India
  2. 2.Dept. of Computer Science, Univ. of ChicagoU.S.A.
  3. 3.The Institute of Mathematical Sciences, Chennai 600 113India

Personalised recommendations