Proving Church’s Thesis

(Abstract)
  • Yuri Gurevich
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4649)

Abstract

The talk reflects recent joint work with Nachum Dershowitz [4].

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Buss, S.R., Kechris, A.A., Pillay, A., Shore, R.A.: Prospects for mathematical logic in the twenty-first century. Bulletin of Symbolic Logic 7(2), 169–196 (2001)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Church, A.: An unsolvable problem of elementary number theory. American Journal of Mathematics 58, 345–363 (1936)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Davis, M.: Why Gödel didn’t have Church’s thesis. Information and Control 54, 3–24 (1982)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Dershowitz, N., Gurevich, Y.: A natural axiomatization of Church’s thesis (to appear)Google Scholar
  5. 5.
    Gödel, K.: Kurt Gödel: Collected Works. In: Feferman, S. (ed.) Unpublished essays and lectures, vol. III, p. 168. Oxford University Press, Oxford (1995)Google Scholar
  6. 6.
    Gurevich, Y.: Sequential abstract state machines capture sequential algorithms. ACM Transactions on Computational Logic 1, 77–111 (2000)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Kleene, S.C.: Introduction to Metamathematics. North Holland, Amsterdam (1952)MATHGoogle Scholar
  8. 8.
    Kolmogorov, A.N.: O ponyatii algoritma (On the concept of algorithm), Uspekhi Matematicheskikh Nauk, vol. 8(4), pp. 175–176 (1953) (in Russian). An English translation is In: Uspensky, V.A., Semenov, A.L.: Algorithms: Main Ideas and Applications, pp. 18–19. Kluwer (1993)Google Scholar
  9. 9.
    Montague, R.: Towards a general theory of computability. Synthese 12(4), 429–438 (1960)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Shoenfield, J.R.: Recursion Theory. Lecture Notes in Logic, vol. 1. Springer, New York (1991)Google Scholar
  11. 11.
    Turing, A.M.: On computable numbers, with an application to the Entscheidungsproblem. In: Proceedings of the London Mathematical Society, vol. 42, pp. 230–265, 1936–37. Corrections in vol. 43, pp. 544–546 (1937)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Yuri Gurevich
    • 1
  1. 1.Microsoft Research 

Personalised recommendations