Ergodic Simulations for Diffusion in Random Velocity Fields

  • Nicolae Suciu
  • Călin Vamos
  • Karl Sabelfeld
Conference paper

Summary

Ergodic simulations aim at estimating ensemble average characteristics of diffusion in random fields from space averages. The traditional approach, based on large supports of the initial concentration in general fails to obtain ergodic simulations. However, such simulations, using single realizations of the velocity, are shown to be feasible if space averages with respect to the location of the initial concentration support are used to estimate ensemble averages.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [CD99]
    J. P. Chilès and P. Delfiner. Geostatisctics: Modeling Spatial Uncertainty. Wiley, New York (1999)Google Scholar
  2. [KKS05]
    P. Kramer, O. Kurbanmuradov, and K. Sabelfeld. Extension of multiscale Gaussian random field simulations algorithm. Weierstrass Institute, Berlin, Preprint 1040 (2005)Google Scholar
  3. [MM80]
    G. Matheron and G. de Marsily. Is transport in porous media always diffusive? Water Resour. Res., 16, 901–917 (1980)CrossRefGoogle Scholar
  4. [MPS93]
    J. Misguish, G. Pelletier, and P. Schuck (editors). Statistical Description of Transport in Plasma, Astra- and Nuclear Physics. Les Houches Series, Nova Science Publ., Inc., New York (1993)Google Scholar
  5. [MY75]
    A. S. Monin and A. M. Yaglom. Statistical Fluid Mechanics: Mechanics of Turbulence. MIT Press, Cambridge, M A (1975)Google Scholar
  6. [SVV04]
    N. Suciu, C. Vamoş, J. Vanderborght, H. Hardelauf, and H. Vereecken. Numerical modeling of large scale transport of contaminant solutes using the global random walk algorithm. Monte Carlo Methods and Appl., 10 (2),153–177 (2004)MATHCrossRefMathSciNetGoogle Scholar
  7. [SV06]
    N. Suciu and C. Vamoş. Evaluation of overshooting errors in particle methods for diffusion by biased global random walk. Rev. Anal. Num. Th. Approx., 35, 119–126 (2006)MATHGoogle Scholar
  8. [SVV06]
    N. Suciu, C. Vamoş, J. Vanderborght, H. Hardelauf, and H. Vereecken. Numerical investigations on ergodicity of solute transport in heterogeneous aquifers, Water Resour. Res., 42, W04409, doi:10.1029/2005WR004546 (2006)CrossRefGoogle Scholar
  9. [SVE06]
    N. Suciu, C. Vamoş, and J. Eberhard. Evaluation of the first-order approximations for transport in heterogeneous media. Water Resour. Res., 42, W11504, doi: 10.1029/2005WR004714 (2006)CrossRefGoogle Scholar
  10. [SVV07]
    N. Suciu, C. Vamoş, and H. Vereecken. Multiple meanings of ergodicity in real life problems. In: Marinoschi, G., Ion, S., Popa, C. (ed) Proceedings of the 5th Workshop on Mathematical Modelling of Environmental and Life Sciences Problems. Rom. Acad. Publishing House, Bucharest (2007, to appear)Google Scholar
  11. [VSV03]
    C. Vamoş, N. Suciu, and H. Vereecken. Generalized random walk algorithm for the numerical modeling of complex diffusion processes, J. Comp. Phys., 186 (2), 527–544 (2003)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Nicolae Suciu
    • 1
  • Călin Vamos
    • 2
  • Karl Sabelfeld
    • 3
    • 4
  1. 1.Institute of Applied MathematicsFriedrich-Alexander University of Erlangen-NurembergErlangenGermany
  2. 2.T. Popoviciu Institute of Numerical AnalysisRomanian AcademyCluj-NapocaRomania
  3. 3.Weierstrass Institute for Applied Analysis and StochasticsBerlinGermany
  4. 4.Institute of Computational Mathematics and Mathem. GeophysicsRussian Acad. Sci.NovosibirskRussia

Personalised recommendations