(t, m, s)-Nets and Maximized Minimum Distance

  • Leonhard Grünschloß
  • Johannes Hanika
  • Ronnie Schwede
  • Alexander Keller
Conference paper

DOI: 10.1007/978-3-540-74496-2_23

Cite this paper as:
Grünschloß L., Hanika J., Schwede R., Keller A. (2008) (t, m, s)-Nets and Maximized Minimum Distance. In: Keller A., Heinrich S., Niederreiter H. (eds) Monte Carlo and Quasi-Monte Carlo Methods 2006. Springer, Berlin, Heidelberg

Summary

Many experiments in computer graphics imply that the average quality of quasi-Monte Carlo integro-approximation is improved as the minimal distance of the point set grows. While the definition of (t, m, s)-nets in base b guarantees extensive stratification properties, which are best for t = 0, sampling points can still lie arbitrarily close together. We remove this degree of freedom, report results of two computer searches for (0, m, 2)-nets in base 2 with maximized minimum distance, and present an inferred construction for general m. The findings are especially useful in computer graphics and, unexpectedly, some (0, m, 2)-nets with the best minimum distance properties cannot be generated in the classical way using generator matrices.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Leonhard Grünschloß
    • 1
  • Johannes Hanika
    • 1
  • Ronnie Schwede
    • 2
  • Alexander Keller
    • 1
  1. 1.Ulm UniversityGermany
  2. 2.EawagSwiss Federal Institute of Aquatic Science and TechnologySwitzerland

Personalised recommendations