Improved Multilevel Monte Carlo Convergence using the Milstein Scheme

  • Mike Giles

Summary

In this paper we show that the Milstein scheme can be used to improve the convergence of the multilevel Monte Carlo method for scalar stochastic differential equations. Numerical results for Asian, lookback, barrier and digital options demonstrate that the computational cost to achieve a root-mean-square error of ε is reduced to O(ε-2). This is achieved through a careful construction of the multilevel estimator which computes the difference in expected payoff when using different numbers of timesteps.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [BGK97]
    M. Broadie, P. Glasserman, and S. Kou. A continuity correction for discrete barrier options. Mathematical Finance, 7(4):325–348, 1997.MATHCrossRefMathSciNetGoogle Scholar
  2. [BT95]
    V. Bally and D. Talay. The law of the Euler scheme for stochastic differential equations, I: convergence rate of the distribution function. Probability Theory and Related Fields, 104(1):43–60, 1995.CrossRefMathSciNetGoogle Scholar
  3. [Ecu04]
    P. L'Ecuyer. Quasi-Monte Carlo methods in finance. In R.G. Ingalls, M.D. Rossetti, J.S. Smith, and B.A. Peters, editors, Proceedings of the 2004 Winter Simulation Conference, pages 1645–1655. IEEE Press, 2004.Google Scholar
  4. [ES02]
    M. Emsermann and B. Simon. Improving simulation efficiency with quasi control variates. Stochastic Models, 18(3):425–448, 2002.MATHCrossRefMathSciNetGoogle Scholar
  5. [Gil06]
    M.B. Giles. Multilevel Monte Carlo path simulation. Technical Report NA06/03, Oxford University Computing Laboratory, 2006 (to appear in Operations Research).Google Scholar
  6. [GL94]
    J.G. Gaines and T.J. Lyons. Random generation of stochastic integrals. SIAM J. Appl. Math., 54(4):1132–1146, 1994.MATHCrossRefMathSciNetGoogle Scholar
  7. [Gla04]
    P. Glasserman. Monte Carlo Methods in Financial Engineering. Springer-Verlag, New York, 2004.MATHGoogle Scholar
  8. [Hei01]
    S. Heinrich. Multilevel Monte Carlo Methods, volume 2179 of Lecture Notes in Computer Science, pages 58–67. Springer-Verlag, 2001.Google Scholar
  9. [Keb05]
    A. Kebaier. Statistical Romberg extrapolation: a new variance reduction method and applications to options pricing. Annals of Applied Probability, 14(4):2681–2705, 2005.CrossRefMathSciNetGoogle Scholar
  10. [KP92]
    P.E. Kloeden and E. Platen. Numerical Solution of Stochastic Differential Equations. Springer-Verlag, Berlin, 1992.MATHGoogle Scholar
  11. [KS05]
    F.Y. Kuo and I.H. Sloan. Lifting the curse of dimensionality. Notices of the AMS, 52(11):1320–1328, 2005.MATHMathSciNetGoogle Scholar
  12. [Nie92]
    H. Niederreiter. Random Number Generation and Quasi-Monte Carlo Methods. SIAM, 1992.Google Scholar
  13. [Spe05]
    A. Speight. A multilevel approach to control variates. Working paper, Georgia State University, 2005.Google Scholar
  14. [TT90]
    D. Talay and L. Tubaro. Expansion of the global error for numerical schemes solving stochastic differential equations. Stochastic Analysis and Applications, 8:483–509, 1990.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Mike Giles
    • 1
  1. 1.Oxford University Computing LaboratoryOxfordUK

Personalised recommendations