Hierarchical ALS Algorithms for Nonnegative Matrix and 3D Tensor Factorization
Abstract
In the paper we present new Alternating Least Squares (ALS) algorithms for Nonnegative Matrix Factorization (NMF) and their extensions to 3D Nonnegative Tensor Factorization (NTF) that are robust in the presence of noise and have many potential applications, including multi-way Blind Source Separation (BSS), multi-sensory or multi-dimensional data analysis, and nonnegative neural sparse coding. We propose to use local cost functions whose simultaneous or sequential (one by one) minimization leads to a very simple ALS algorithm which works under some sparsity constraints both for an under-determined (a system which has less sensors than sources) and over-determined model. The extensive experimental results confirm the validity and high performance of the developed algorithms, especially with usage of the multi-layer hierarchical NMF. Extension of the proposed algorithm to multidimensional Sparse Component Analysis and Smooth Component Analysis is also proposed.
Keywords
Blind Source Separation Nonnegative Matrix Factorization Alternate Little Square Nonlinear Projection Alternate Little Square AlgorithmPreview
Unable to display preview. Download preview PDF.
References
- 1.Cichocki, A., Amari, S.: Adaptive Blind Signal And Image Processing (New revised and improved edition). John Wiley, New York (2003)Google Scholar
- 2.Dhillon, I., Sra, S.: Generalized nonnegative matrix approximations with Bregman divergences. In: Neural Information Proc. Systems, Vancouver, Canada (2005)Google Scholar
- 3.Hazan, T., Polak, S., Shashua, A.: Sparse image coding using a 3D non-negative tensor factorization. In: International Conference of Computer Vision (ICCV), pp. 50–57 (2005)Google Scholar
- 4.Heiler, M., Schnoerr, C.: Controlling sparseness in non-negative tensor factorization. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 56–67. Springer, Heidelberg (2006)CrossRefGoogle Scholar
- 5.Hoyer, P.: Non-negative matrix factorization with sparseness constraints. Journal of Machine Learning Research 5, 1457–1469 (2004)MathSciNetGoogle Scholar
- 6.Morup, M., Hansen, L.K., Herrmann, C.S., Parnas, J., Arnfred, S.M.: Parallel factor analysis as an exploratory tool for wavelet transformed event-related EEG. NeuroImage 29, 938–947 (2006)CrossRefGoogle Scholar
- 7.Smilde, A., Bro, R., Geladi, P.: Multi-way Analysis: Applications in the Chemical Sciences. John Wiley and Sons, New York (2004)Google Scholar
- 8.Oja, E., Plumbley, M.D.: Blind separation of positive sources by globally convergent gradient search. Neural Computation 16, 1811–1825 (2004)zbMATHCrossRefGoogle Scholar
- 9.Lee, D.D., Seung, H.S.: Learning the parts of objects by nonnegative matrix factorization. Nature 401, 788–791 (1999)CrossRefGoogle Scholar
- 10.Berry, M., Browne, M., Langville, A., Pauca, P., Plemmons, R.: Algorithms and applications for approximate nonnegative matrix factorization. Computational Statistics and Data Analysis (in press, 2006)Google Scholar
- 11.Cichocki, A., Amari, S., Zdunek, R., Kompass, R., Hori, G., He, Z.: Extended SMART algorithms for non-negative matrix factorization. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2006. LNCS (LNAI), vol. 4029, pp. 548–562. Springer, Heidelberg (2006)CrossRefGoogle Scholar
- 12.Kim, M., Choi, S.: Monaural music source separation: Nonnegativity, sparseness, and shift-invariance. In: Rosca, J., Erdogmus, D., Príncipe, J.C., Haykin, S. (eds.) ICA 2006. LNCS, vol. 3889, pp. 617–624. Springer, Heidelberg (2006)CrossRefGoogle Scholar
- 13.Zdunek, R., Cichocki, A.: Non-negative matrix factorization with quasi-Newton optimization. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2006. LNCS (LNAI), vol. 4029, pp. 870–879. Springer, Heidelberg (2006)CrossRefGoogle Scholar
- 14.Zdunek, R., Cichocki, A.: Nonnegative matrix factorization with constrained second-order optimization. Signal Processing 87, 1904–1916 (2007)CrossRefGoogle Scholar
- 15.Cichocki, A., Zdunek, R.: Multilayer nonnegative matrix factorization. Electronics Letters 42, 947–948 (2006)CrossRefGoogle Scholar
- 16.Murray, J.F., Kreutz-Delgado, K.: Learning sparse overcomplete codes for images. Journal of VLSI Signal Processing 45, 97–110 (2006)CrossRefGoogle Scholar
- 17.Kreutz-Delgado, K., Murray, J.F., Rao, B.D., Engan, K., Lee, T.W., Sejnowski, T.J.: Dictionary learning algorithms for sparse representation. Neural Computation 15, 349–396 (2003)zbMATHCrossRefGoogle Scholar
- 18.Cichocki, A., Zdunek, R.: NTFLAB for Signal Processing. Technical report, Laboratory for Advanced Brain Signal Processing, BSI, RIKEN, Saitama, Japan (2006)Google Scholar