Creating Numerically Efficient FDTD Simulations Using Generic C++ Programming

  • I. Valuev
  • A. Deinega
  • A. Knizhnik
  • B. Potapkin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4707)

Abstract

In the present work we propose a strategy for developing reusable multi-model simulation library for solving Finite-Difference Time-Domain (FDTD) problem for Maxwell’s equations. The described EMTL (Electromagnetic Template Library) architecture is based on the selection of a small number of primitive low-level physical and numerical concepts which are used as parameters and building blocks for higher-level algorithms and structures. In the present work we demonstrate that a large set of FDTD techniques may be formulated using the same primitives. The basic concept for this representation is a discretized field contour entering the integral form of Maxwell’s equations. We also describe the proposed architecture in terms of FDTD C++ template class library and discuss the performance and the usage of this library for various FDTD-based simulations.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Joannopoulos, J.D., Meade, R.D., Winn, J.N.: Photonic crystals: molding the flow of light. Princeton University Press, Princeton (1995)MATHGoogle Scholar
  2. 2.
    Johnson, S.G., Joannopoulos, J.D.: Acta Materialia 51, 582 (2003)Google Scholar
  3. 3.
    Taflove, A., Hagness, S.H.: Computational Electrodynamics: The Finite Difference Time-Domain Method. Artech House, Boston (2000)MATHGoogle Scholar
  4. 4.
    Jurgens, T.G., Taflove, A., Umashankar, K.R., Moore, T.G.: IEEE Trans. Antennas and Propagation 40, 357 (1992)Google Scholar
  5. 5.
    Dey, S., Mittra, R.: IEEE Microwave and Guided Wave Lett.  7, 273 (1997)Google Scholar
  6. 6.
    MIT Electromagnetic Equation Propagation, http://ab-initio.mit.edu/wiki/index.php/Meep
  7. 7.
    Remcom’s full wave FDTD solver, http://www.remcom.com/xfdtd6/index.htm
  8. 8.
    RM Associates’ conformal FDTD code, http://www.rm-associates.biz/software.html
  9. 9.
    Farjadpour, A., Roundy, D., Rodriguez, A., et al.: Optics Letters.  31, 2972 (2006)Google Scholar
  10. 10.
    Yee, K.S.: IEEE Trans. Antennas and Propagation 14, 302 (1966)Google Scholar
  11. 11.
    Dobbler, W., Haugen, N.E.L., Yousef, T.A., Brandenburg, A.: Phys Rev E 68 (2003) 026304, http://www.nordita.dk/software/pencil-code
  12. 12.
    Roberts, S.: Phys Rev.  114, 104 (1959)Google Scholar
  13. 13.
    Joint Supercomputer Center of the Russian Academy of Scienece, http://www.jscc.ru
  14. 14.
    Computational cluster of the Department of Molecular and Biological Physics, MIPT, http://biolab1.mipt.ru
  15. 15.
    Bohren, C.F., Huffman, D.R.: Absorption and Scattering of Light by Small Particles. Wiley-Interscience, New York (1983)Google Scholar
  16. 16.
    Umashankar, K.R., Taflove, A.: IEEE Trans. Electromagnetic Compatibility 24, 397 (1982)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • I. Valuev
    • 1
  • A. Deinega
    • 2
  • A. Knizhnik
    • 2
  • B. Potapkin
    • 2
  1. 1.Joint Institute for High Temperatures of the Russian Academy of Sciences, Izhorskaya 13/19, Moscow, 125412Russia
  2. 2.KINTECH Kinetic Technologies, Kurchatov Sq. 1, Moscow, 123182, Email: info@kintech.ruRussia

Personalised recommendations