The Past, Present, and Future of IEC 61499

  • Alois Zoitl
  • Thomas Strasser
  • Ken Hall
  • Ray Staron
  • Christoph Sünder
  • Bernard Favre-Bulle
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4659)

Abstract

In 1991, Technical Committee 65 (TC65) of the International Electrotechnical Commission (IEC) approved a New Work Item (NWI) for the development of an international standard for the use of software objects known as Function Blocks (FBs) in distributed Industrial-Process Measurement and Control Systems (dIPMCS). The need for this new standard resulted out of several studies and research programs that have been started or conducted in the late eighties and early nineties of the last century. IEC 61499 got finally standardized in January 2005. Before that, since 2000, it was available in the form of a so-called Public Available Specification (PAS). Although IEC 61499 has been available for so long, up to now most published work on it has been academic or resulted only in prototypical test cases. Most activities around the IEC 61499 standard have been in standardization of the execution environment and definition of semantics. Some current research is in pursuing design and coding tools. This paper gives and overview about the past and present activities and implementations related to IEC 61499 and discusses the potential of this new standard for future application scenarios.

Keywords

Holonic Systems Distributed Control Next Generation Automation and Control Systems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    IEC, Geneva. IEC 61499-1: Function Blocks - Part 1 Architecture (2005)Google Scholar
  2. 2.
    IEC, Geneva. IEC 61131-3 Programmable controllers - Part 3: Programming languages (1993)Google Scholar
  3. 3.
    Holonic Manufacturing Systems Project Consortium. HMS Project Homepage (January 2007), Online Available: http://hms.ifw.uni-hannover.de
  4. 4.
    Iacocca Institute: 21. Century Manufacturing Enterprise Strategy: An Industry-Led View. Technical report, Iacocca Institute, Bethlehem, PA (1991)Google Scholar
  5. 5.
    Christensen, J.H.: Holonic Manufacturing Systems: Initial Architecture and Standards Directions. In: Consortium, H.M.S. (ed.) Proceedings of the 1st Euro Workshop on Holonic Manufacturing Systems, Hannover (December 1994)Google Scholar
  6. 6.
    Vyatkin, V.: IEC 61499 Function Blocks for Embedded and Distributed Control Systems Design, ISA-o3neida, USA (2006)Google Scholar
  7. 7.
    Haidler, J.: Implementing IEC 61499 on embedded systems and distributed control of an assembly testbed. Master’s thesis, Vienna University of Technology (June 2002)Google Scholar
  8. 8.
    Zoitl, A.: Development of an IEC 61499 based embedded control platform and integration in a distributed automation system. Master’s thesis, Vienna University of Technology (October 2002)Google Scholar
  9. 9.
    Balasubramanian, S.: A Metamorphic Control Architecture for Holonic Systems. PhD thesis, University of Calgary (1997)Google Scholar
  10. 10.
    Fletcher, M., Norrie, D.H.: Real-time Reconfiguration using an IEC 61499 Operating System. In: IEEE Parallel and Distributed Processing Symposium, IEEE Computer Society Press, Los Alamitos (2001)Google Scholar
  11. 11.
    Doukas, G.S, Thramboulidis, K.: A Real-Time Linux Execution Environment for Function Block Based Distributed Control Applications. In: Proc. of the 3rd IEEE Int. Conf. on Industrial Informatics, Perth (2005)Google Scholar
  12. 12.
    Thramboulidis, K., Zoupas, A.: Real-Time Java in control and Automation: A Model Driven Development Approach. In: 10th IEEE Conf. on Emerging Technologies and Factory Automation. IEEE Computer Society Press, Los Alamitos (2005)Google Scholar
  13. 13.
    Blume, R.: Function Block Architecture Runtime Engine and Engineering Toolset: Deliverable D1.3-1 of HMS consortium. Technical report, Softing GmbH, Munich Germany (2000)Google Scholar
  14. 14.
    Martinez Lastra, J.L., Lobov, A., Godinho, L., Nunes, A.: Function Blocks for Industrial-Process Measurement and Control Systems: IEC 61499 Introduction and Run-time Platforms. Tampere University of Technology, Tampere (2004)Google Scholar
  15. 15.
    ICS Triplex: ISaGRAF Webpage (January 2007), http://www.isagraf.com
  16. 16.
    Cengic, G., Ljungkrantz, O., Akesson, K.: Formal Modeling of Function Block Applications Running in IEC 61499 Execution Runtime. In: Proceedings of the 11th IEEE Conference on Emerging Technologies and Factory Automation, ETFA 2006, Praque (September 2006) Google Scholar
  17. 17.
    Khalgui, M., Rebeuf, X., Simonot-Lioin, F.: A Schedulability Analysis of an IEC-61499 Control Application. In: Proceedings of the 6th IFAC International Conference on Fieldbus Systems and their Applications, FET, Publa, Mexico (November 2005)Google Scholar
  18. 18.
    Hagge, N., Wagner, B.: Applying the handler-based execution model to IEC 61499 basic and composite function blocks. In: Proceedings of the 4rd IEEE International Conference on Industrial Informatics, INDIN 2006, Singapore (August 2006)Google Scholar
  19. 19.
    Christensen, J.H.: Design patterns for systems engineering in IEC 61499, Verteilte Automatisierung - Modelle und Methoden für Entwurf, Verifikation, Engineering und Instrumentierung (VA2000), Otto-von-Guericke-Universität Magdeburg, Germany (March 22-23, 2000) Google Scholar
  20. 20.
    Ferrarini, L., Veber, C., Lorentz, K.: A case study for modelling and design of distributed automation systems. In: Proceedings of IEEE/ASME Int. Conference on Advanced Intelligent Mechatronics (AIM) (2003)Google Scholar
  21. 21.
    Thramboulidis, K.: Model Integrated Mechatronics-Toward a New Paradigm in the Development of Manufacturing Systems. IEEE Transactions on Industrial Informatics 1(1), 54–61 (2005)CrossRefGoogle Scholar
  22. 22.
    Sünder, C., Zoitl, A., Rainbauer, M., Favre-Bulle, B.: Hierarchical control modeling architecture for modular distributed automation systems. In: Proc. of the IEEE Int. Conf. on Industrial Informatics (INDIN 2006) (2006)Google Scholar
  23. 23.
    Čengić, G., Ljungkrantz, O., Åkesson, K.: A Framework for Component Based Distributed Control Software Development Using IEC 61499. In: Proceedings of the IEEE Int. Conference on Emerging Technologies and Factory Automation (ETFA) (2006) Google Scholar
  24. 24.
    Vyatkin, V., Hanisch, H.-M.: A modeling approach for verification of IEC61499 function blocks using net condition/event systems. In: Proceedings of IEEE Int. Conference on Emerging Technologies and Factory Automation (ETFA 1999), pp. 261–270 (1999)Google Scholar
  25. 25.
    Lüder, A., Schwab, C., Tangermann, M., Peschke, J.: Formal models for the verification of IEC 61499 function block based control applications. In: Proceedings of IEEE Int. Conference on Emerging Technologies in Factory Automation (ETFA 2005), pp. 105–112 (2005)Google Scholar
  26. 26.
    Wurmus, H., Wagner, B.: IEC 61499 konforme Beschreibung verteilter Steuerungen mit Petri-Netzen, Fachtagung Verteilte Automatisierung (2000)Google Scholar
  27. 27.
    Schnakenbourg, C., Faure, J.-M., Lesage, J.-J.: Towards IEC 61499 function blocks diagrams verification. In: Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, vol. 3 (2002)Google Scholar
  28. 28.
    Dubinin, V., Vyatkin, V., Hanisch, H.-M.: Modelling and Verification of IEC 61499 Applications using Prolog. In: Proceedings of IEEE Int. Conference on Emerging Technologies and Factory Automation (ETFA 2006), pp. 774–781 (2006)Google Scholar
  29. 29.
    Vyatkin, V.: Execution Semantic of Function Blocks based on the Model of Net Condition/Event Systems. In: Proceedings of the IEEE Int. Conference on Industrial Informatics (INDIN’06), pp. 874–879 (2006)Google Scholar
  30. 30.
    Stanica, M.: Behavioral Modeling of IEC 61499 Control Applications, PhD report, Universite de Rennes (2005)Google Scholar
  31. 31.
    Khaligui, M., Rebeuf, X., Simonot-Lion, F.: A behavior model for IEC 61499 function blocks. In: Proceedings of the 3rd Workshop on Modelling of Objects, Components, and Agents, pp. 71–88 (2004)Google Scholar
  32. 32.
    Sünder, C., Rofner, R., Vyatkin, V., Favre-Bulle, B.: Formal description of an IEC 61499 runtime environment with real-time constraints. (accepted for). In: IEEE Int. Conference on Industrial Informatics (INDIN 2007), Vienna, Austria (2007)Google Scholar
  33. 33.
    Zhang, X., Brennan, R.W., Xu, Y., Norrie, D.H.: Runtime Adaptability of a Concurrent Function Block Model for Real-Time Holonic Controller. In: IEEE Int. Conf. on Systems, Man, and Cybernetics (2001)Google Scholar
  34. 34.
    Olsen, S., Wang, J., Ramirez-Serrano, A., Brennan, R.W.: Contingenciesbased reconfiguration of distributed factory automation. Robotics and Computerintegrated Manufacturing 21 (2005)Google Scholar
  35. 35.
    Vyatkin, V.: The Potential Impact of the IEC 61499 Standard on the Progress of Distributed Intelligent Automation. International Journal of Manufacturing Technology and Management 8(1/2/3) (2006)Google Scholar
  36. 36.
    Sünder, C., et al.: Usability and Interoperability of IEC 61499 based distributed automation systems. In: Industrial Informatics, 2006 IEEE International Conference, pp. 31–37 (August 2006)Google Scholar
  37. 37.
    Kuppinger, S.: Die Schlüssel zur Effizienz, IEE Industrie Elektrik+Elektronik, 1 (2006) Google Scholar
  38. 38.
    Lewis, R.W.: Modeling control systems using IEC 61499. IEE Publishing (2001)Number ISBN: 0 85296 796 9.Google Scholar
  39. 39.
    Strasser, T., Müller, I., Zoitl, A., Sünder, C., Grabmair, G.: A Distributed Control Environment for Reconfigurable Manufacturing. In: 1st I*PROMS Virtual Conference on Intelligent Production Machines and Systems (2005)Google Scholar
  40. 40.
    Strasser, T., Müller, I., Schüpany, M., Ebenhofer, G., Mungenast, R., Sünder, C., Zoitl, A., Hummer, O., Thomas, S., Steininger, H.: An Advanced Engineering Environment for Distributed & Reconfigurable Industrial Automation & Control Systems based on IEC 61499. (appears) In: 2nd I*PROMS Virtual Conference on Intelligent Production Machines and Systems (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Alois Zoitl
    • 1
  • Thomas Strasser
    • 2
  • Ken Hall
    • 3
  • Ray Staron
    • 3
  • Christoph Sünder
    • 1
  • Bernard Favre-Bulle
    • 1
  1. 1.Automation and Control Institute, Vienna University of Technology, Gusshausstr., 27-29/376, 1040 ViennaAustria
  2. 2.PROFACTOR Produktionsforschungs GmBH, 4407 Steyr-GleinkAustria
  3. 3.Rockwell Automation, Inc., 1 Allen-Bradley Drive, Mayfield Heights, OH 44124USA

Personalised recommendations