Advertisement

Nonlinear and Cooperative Dynamics in the Human Brain: Evidence from Multimodal Neuroimaging

  • Andreas Meyer-Lindenberg
  • Danielle S. Bassett
Part of the Understanding Complex Systems book series (UCS)

Abstract

Even a cursory review makes it clear that the operation of the brain critically depends on a complex interaction of spatially segregated neural systems. An adequate description of these interactions and an understanding of their nature are therefore an important challenge for neuroscience. While this applies to normal and abnormal brain functions, a study of the nature of corticocortical interactions will be needed most of all in the study of diseases and conditions in which an alteration of connectivity is assumed to play a prominent role. A case in point is schizophrenia, in which convergent evidence from neuroanatomical, neurophysiological, pharmacological and theoretical studies suggests that a disturbance of cortical connections may play an important role in producing a functionally devastating and characteristic syndrome based on a pathology that is (comparatively) subtle and possibly diffuse [17, 22, 43, 70].

Keywords

Lyapunov Exponent Random Graph Correlation Dimension Supplementary Motor Area Surrogate Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Achard S, Salvador R, Whitcher B, Suckling J, Bullmore E (2006) A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. J Neurosci 26:63–72CrossRefGoogle Scholar
  2. 2.
    Albert R, Barabási AL (2002) Statistical mechanics of complex networks. Rev Mod Phys 74:47–98CrossRefGoogle Scholar
  3. 3.
    Babloyantz A, Salazar JM, Nicolis C (1985) Evidence of chaotic dynamics of brain activity during the sleep cycle. Phys Lett A 111:152–156CrossRefGoogle Scholar
  4. 4.
    Barahona M, Pecora LM (2002) Synchronization in small-world systems. Phys Rev Lett 89:054101CrossRefGoogle Scholar
  5. 5.
    Bassett DS, Bullmore ET (2006) Small-world brain networks. Neuroscientist 12:512–523CrossRefGoogle Scholar
  6. 6.
    Bassett DS, Meyer-Lindenberg A, Achard S, Duke T, Bullmore ET (2006) Adaptive reconfiguration of fractal small-world human brain functional networks. Proc Natl Acad Sci USA 103:19518–19523CrossRefGoogle Scholar
  7. 7.
    Bollobás B (2001) Random graphs. Cambridge University Press, CambridgezbMATHGoogle Scholar
  8. 8.
    Breakspear M (2006) The nonlinear theory of schizophrenia. Aust NZ J Psychiat 40:20–35CrossRefGoogle Scholar
  9. 9.
    Brinkman C (1981) Lesions in supplementary motor area interfere with a monkey’s performance of a bimanual coordination task. Neurosci Lett 27:267–270CrossRefGoogle Scholar
  10. 10.
    Bullmore ET, Fadili J, Maxim V, Sendur L, Whitcher B, Suckling J, Brammer MJ, Breakspear M (2004) Wavelets and functional magnetic resonance imaging of the human brain. Neuroimage 23:S234–S249CrossRefGoogle Scholar
  11. 11.
    Buzug T, Pawelzik K, von Stamm J, Pfister G (1994) Mutual information and global strange attractors in Taylor-Couette flow. Physica D 72:343–350zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Dijkstra EW (1959) A note on two problems in connexion with graphs. Numer Math 1:269–271zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Dunki RM, Ambuhl B (1996) Scaling properties in temporal patterns of schizophrenia. Physica A 230:544–553CrossRefGoogle Scholar
  14. 14.
    Edelman GM (1992) Bright air, brilliant fire: on the matter of the mind. Basic Books, New YorkGoogle Scholar
  15. 15.
    Elbert T, Ray WJ, Kowalik ZJ, Skinner JE, Graf KE, Birbaumer N (1994) Chaos and physiology: deterministic chaos in excitable cell assemblies. Physiol Rev 74:1–47Google Scholar
  16. 16.
    Erdös P, Rényi A (1959) On random graphs. Publ Math Debrecen 6:290–297MathSciNetzbMATHGoogle Scholar
  17. 17.
    Fletcher P (1998) The missing link: a failure of fronto-hippocampal integration in schizophrenia. Nat Neurosci 1:266–267CrossRefGoogle Scholar
  18. 18.
    Frank GW, Lookman T, Nerenberg MAH, Essex C (1990) Chaotic time series analyses of epileptic seizures. Physica D 46:427–433zbMATHCrossRefGoogle Scholar
  19. 19.
    Freund HJ (1987) Differential effects of cortical lesions in humans. Ciba Found Symp 132:269–281Google Scholar
  20. 20.
    Freund HJ, Hummelsheim H (1985) esions of premotor cortex in man. Brain 108:697–733CrossRefGoogle Scholar
  21. 21.
    Friston KJ (1996) Theoretical neurobiology and schizophrenia. Brit Med Bull 52:644–655Google Scholar
  22. 22.
    Friston KJ (1998) The disconnection hypothesis. Schizophr Res 30:115–125CrossRefGoogle Scholar
  23. 23.
    Frith C (1995) Functional imaging and cognitive abnormalities. Lancet 346: 615–620CrossRefGoogle Scholar
  24. 24.
    Gerloff C, Corwell B, Chen R, Hallett M, Cohen LG (1997) Stimulation over the human supplementary motor area interferes with the organization of future elements in complex motor sequences. Brain 120:1587–1602CrossRefGoogle Scholar
  25. 25.
    Gerloff C, Corwell B, Chen R, Hallett M, Cohen LG (1998) The role of the human motor cortex in the control of complex and simple finger movement sequences. Brain 121:1695–1709CrossRefGoogle Scholar
  26. 26.
    Grassberger P, Procaccia I (1983) Measuring the strangeness of strange attractors. Physica D 9:189–208zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Haken H (1983) Synergetics. Springer-Verlag, Berlin, Heidelberg, New YorkGoogle Scholar
  28. 28.
    Haken H (1996) Principles of Brain Functioning. Springer, BerlinzbMATHGoogle Scholar
  29. 29.
    Humphries MD, Gurney K, Prescott TJ (2006) The brainstem reticular formation is a small-world, not scale-free, network. Proc Biol Sci 273:503–511CrossRefGoogle Scholar
  30. 30.
    Jirsa VK, Fuchs A, Kelso JAS (1998) Connecting cortical and behavioral dynamics: bimanual coordination. Neural Comput 10:2019–2045CrossRefGoogle Scholar
  31. 31.
    de Jong BM, Willemsen AT, Paans AM (1999) Brain activation related to the change between bimanual motor programs. Neuroimage 9:290–297CrossRefGoogle Scholar
  32. 32.
    Kelso JAS (1984) Phase transitions and critical behavior in human bimanual coordination. Am J Physiol 15:1000–1004Google Scholar
  33. 33.
    Koukkou M, Lehmann D, Federspiel A, Merlo MC (1995) EEG reactivity and EEG activity in never-treated acute schizophrenics, measured with spectral parameters and dimensional complexity. J Neural Transm Gen Sect 99:89–102CrossRefGoogle Scholar
  34. 34.
    Lee KH, Williams LM, Breakspear M, Gordon E (2003) Synchronous gamma activity: a review and contribution to an integrative neuroscience model of schizophrenia. Brain Res Rev 41:57–78CrossRefGoogle Scholar
  35. 35.
    Lopes da Silva FH (1993) EEG analysis: theory and practice. In: Niedermeyer E, Lopes da Silva FH (eds) Electroencephalography. Williams & Wilkins, BaltimoreGoogle Scholar
  36. 36.
    von der Malsburg C (1981) The Correlation Theory of Brain Function. MPI Biophysical Chemistry, Internal Report 81-82Google Scholar
  37. 37.
    von der Malsburg C (1999) The what and why of binding: the modelers perspective. Neuron 24:95–104CrossRefGoogle Scholar
  38. 38.
    Meyer-Lindenberg A (1996) The evolution of complexity in human brain development: an EEG study. Electroen Clin Neuro 99:405–411CrossRefGoogle Scholar
  39. 39.
    Meyer-Lindenberg A (1999) Nichtlineare Dynamik im EEG gesunder Probanden und schizophrener Patienten (Nonlinear dynamics in the EEG of healthy subjects and schizophrenic patients). PhD Thesis, Justus-Liebig-University, GiessenGoogle Scholar
  40. 40.
    Meyer-Lindenberg A (2003) Nichtlineare Rauschunterdrckungsverfahren: algorithmische Aspekte und Anwendung auf Biosignale (Nonlinear noise supression methods: algorithms and application to biosignals). MSc, University of Hagen, HagenGoogle Scholar
  41. 41.
    Meyer-Lindenberg A, Bauer U, Krieger S, Lis S, Vehmeyer K, Schuler G, Gallhofer B (1998) The topography of non-linear cortical dynamics at rest, in mental calculation and moving shape perception. Brain Topogr 10:291–299CrossRefGoogle Scholar
  42. 42.
    Meyer-Lindenberg A, Kohn PD, Kolachana B, Kippenhan S, McInerney-Leo A, Nussbaum R, Weinberger DR, Berman KF (2005) Midbrain dopamine and prefrontal function in humans: interaction and modulation by COMT genotype. Nat Neurosci 8:594–596CrossRefGoogle Scholar
  43. 43.
    Meyer-Lindenberg A, Poline JB, Kohn PD, Holt JL, Egan MF, Weinberger DR, Berman KF (2001) Evidence for abnormal cortical functional connectivity during working memory in schizophrenia. Am J Psychiat 158:1809–1817CrossRefGoogle Scholar
  44. 44.
    Meyer-Lindenberg A, Ziemann U, Hajak G, Cohen L, Berman KF (2002) Transitions between dynamical states of differing stability in the human brain. Proc Natl Acad Sci USA 99:10948–10953CrossRefGoogle Scholar
  45. 45.
    Motter AE, Zhou CS, Kurths J (2005) Enhancing complex-network synchronization. Europhys Lett 69:334–340CrossRefGoogle Scholar
  46. 46.
    Osborne AR, Provenzale A (1989) Finite correlation dimension for stochastic systems with power-law spectra. Physica D 35:357–381zbMATHCrossRefMathSciNetGoogle Scholar
  47. 47.
    Paulus MP, Geyer MA, Braff DL (1996) Use of methods from chaos theory to quantify a fundamental dysfunction in the behavioral organization of schizophrenic patients. Am J Psychiat 153:714–717Google Scholar
  48. 48.
    Peitgen HO, Jürgens H, Saupe D (1992) Chaos and Fractals. New Frontiers of Science. Springer, New York, Berlin, Heidelberg, London, Paris, Tokyo, Hong Kong, Barcelona, BudapestzbMATHGoogle Scholar
  49. 49.
    Percival DB, Waiden AT (2000) Wavelet methods for time series analysis. Cambridge University Press, CambridgezbMATHGoogle Scholar
  50. 50.
    Perrin F, Pernier J, Bertrand O, Giard MH, Echallier JF (1987) Mapping of scalp potentials by surface spline interpolation. Electroen Clin Neuro 66: 75–81CrossRefGoogle Scholar
  51. 51.
    Pritchard WS, Duke DW (1992) Measuring chaos in the brain: a tutorial review of nonlinear dynamical EEG analysis. Int J Neurosci 67:31–80CrossRefGoogle Scholar
  52. 52.
    Prichard D, Theiler J (1994) Generating surrogate data for time series with several simultaneously measured variables. Phys Rev A 73:951–954CrossRefGoogle Scholar
  53. 53.
    Rabinovich MI, Abarbanel HD (1998) The role of chaos in neural systems. Neuroscience 87:5–14CrossRefGoogle Scholar
  54. 54.
    Rose G, Siebler M (1995) Cooperative effects of neuronal ensembles. Exp Brain Res 106:106–110CrossRefGoogle Scholar
  55. 55.
    Sadato N, Yonekura Y, Waki A, Yamada H, Ishii Y (1997) Role of the supplementary motor area and the right premotor cortex in the coordination of bimanual finger movements. J Neurosci 17:9667–9674Google Scholar
  56. 56.
    Schöner G, Kelso JA (1988) Dynamic pattern generation in behavioral and neural systems. Science 239:1513–1520CrossRefGoogle Scholar
  57. 57.
    Shank T, Wagner D (2004) Approximating clustering-coefficient and transitivity. Technical Report 2004-9. Universität Karlsruhe Fakultät fur Informatik, KarlsruheGoogle Scholar
  58. 58.
    Stam CJ, van Woerkom TC, Pritchard WS (1996) Use of non-linear EEG measures to characterize EEG changes during mental activity. Electroen Clin Neuro 99:214–224CrossRefGoogle Scholar
  59. 59.
    Stephan KM, Binkofski F, Halsband U, Dohle C, Wunderlich G, Schnitzler A, Tass P, Herzog H, Sturm V, Zilles K Scitz RJ, Freund HJ (1999) The role of ventral medial wall motor areas in bimanual co-ordination. Brain 122:351–368CrossRefGoogle Scholar
  60. 60.
    Takens F (1981) Detecting strange attractors in turbulence. In: Rand DA, Young LS (eds) Dynamical systems and turbulence. Springer, BerlinGoogle Scholar
  61. 61.
    Theiler J (1994) On the evidence for low-dimensional chaos in an epileptic electroencephalogram. Phys Lett A 196:335–341CrossRefGoogle Scholar
  62. 62.
    Theiler J, Eubank S, Longtin A, Galdrikian B, Farmer JD (1992) Testing for nonlinearity in time series: the method of surrogate data. Physica D 58: 77–94CrossRefGoogle Scholar
  63. 63.
    Toyokura M, Muro I, Komiya T, Obara M (1999) Relation of bimanual coordination to activation in the sensorimotor cortex and supplementary motor area: analysis using functional magnetic resonance imaging. Brain Res Bull 48:211–217CrossRefGoogle Scholar
  64. 64.
    Ungerleider LG, Mishkin M (1982) Two cortical visual systems. In: Ingle DG, Goodale MA, Mansfield RJW (eds) Analysis of visual behaviour. MIT Press, CambridgeGoogle Scholar
  65. 65.
    Versavel M, Leonard JP, Herrmann WM (1995) Standard operating procedure for the registration and computer-supported evaluation of pharmaco-EEG data. ‘EEG in Phase I’ of the Collegium Internationale Psychiatriae Scalarum (CIPS). Neuropsychobiology 32:166–170Google Scholar
  66. 66.
    Viviani P, Perani D, Grassi F, Bettinardi V, Fazio F (1998) Hemispheric asymmetries and bimanual asynchrony in left-and right-handers. Exp Brain Res 120:531–536CrossRefGoogle Scholar
  67. 67.
    Wackermann J, Lehmann D, Dvorak I, Michel CM (1993) Global dimensional complexity of multi-channel EEG indicates change of human brain functional state after a single dose of a nootropic drug. Electroen Clin Neuro 86:193–198CrossRefGoogle Scholar
  68. 68.
    Wallenstein GV, Nash AJ, Kelso JAS (1995) Slow cortical potentials and their frequency and phase characteristics preceding bimanual finger movements. Electroencephalogr Clin Neurophysiol 94:50–59CrossRefGoogle Scholar
  69. 69.
    Watts DJ, Strogatz SH (1998) Collective dynamics of’ small-world’ networks. Nature 393:440–442CrossRefGoogle Scholar
  70. 70.
    Weinberger DR, Berman KF, Suddath R, Torrey EF (1992) Evidence of dysfunction of a prefrontal-limbic network in schizophrenia: a magnetic resonance imaging and regional cerebral blood flow study of discordant monozygotic twins. Am J Psychiat 149:890–897Google Scholar
  71. 71.
    Whitcher B, Guttorp P, Percival DB (2000) Wavelet analysis of covariance with application to atmospheric time series. J Geophys Res 105:941–962CrossRefGoogle Scholar
  72. 72.
    Wise SM (1985) The primate premotor cortex: past, present, and preparatory. Annu Rev Neurosci 8:1–19CrossRefGoogle Scholar
  73. 73.
    Wright JJ, Liley DTL (1996) Dynamics of the brain at global and microscopic scales: Neural networks and the EEG. Behav Brain Sci 19:285–320CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Andreas Meyer-Lindenberg
    • 1
  • Danielle S. Bassett
    • 2
  1. 1.Central Institute of Mental HealthMannheimGermany
  2. 2.Unit for Systems Neuroscience in Psychiatry and Neuroimaging Core Facility, Genes, Cognition and Psychosis ProgramNational Institute for Mental Health, NIH, DHHSBethesdaUSA

Personalised recommendations