An Efficient Re-keying Scheme for Cluster Based Wireless Sensor Networks

  • Faraz Idris Khan
  • Hassan Jameel
  • S. M. K. Raazi
  • Adil Mehmood Khan
  • Eui Nam Huh
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4706)

Abstract

Due to vast application of WSN (Wireless Sensor Networks) in mission critical military operations, securing WSN has received lot of attention from the research community. WSN when deployed in hostile environment, they are prone to various kinds of attacks one of which is node capture which might reveal important sensor information being transferred to the captured node. Thus dynamic key management schemes employ re-keying mechanism to change the group key used by the sensor nodes for communication. Constrained resources such as energy, memory and computational capabilities of sensor nodes requires a re-keying scheme efficient in design to minimize overhead while maintaining secure communications over lifespan of the network. In this paper we present an efficient re-keying scheme for cluster based WSN which requires minimal communication with the base station and O(1) computation at the sensor node to calculate the new group key.

Keywords

group key management dynamic key management re-keying wireless sensor networks network security 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: A survey on sensor networks. IEEE Communications Magazine 40(8), 102–114 (2002)CrossRefGoogle Scholar
  2. 2.
    Kahn, J.M., Katz, R.f.H., Pister, K.S.J.: Next century challenges: Mobile networking for smart dust. In: 5th Annual ACM/IEEE International Conference on Mobile Computing and Networking (MobiCom), pp. 483–492 (1999)Google Scholar
  3. 3.
    Wireless Integrated Network Sensors, University of California, Available: http://www.janet.ucla.edu/WINS
  4. 4.
    Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures and public-key cryptosystems. Communications of the ACM 21(2), 120–126 (1978)MATHCrossRefGoogle Scholar
  5. 5.
    Eltoweissy, M., Heydari, H., Morales, L., Sadborough, H.: Combinatorial Optimization of Key Management in Group Communications. Journal of Network and Systems Management, Special Issue on Network Security  (2004)Google Scholar
  6. 6.
    Moharrum, M.A., Eltoweissy, M.: A Study of Static versus Dynamic Keying Schemes in Sensor Networks. In: 2nd ACM international workshop on Performance evaluation of wireless adhoc, sensor and ubiquitous networks, pp. 122–129. ACM Press, New York (2005)CrossRefGoogle Scholar
  7. 7.
    Liu, D., Ning, P.: Establishing pairwise keys in distributed sensor networks. In: ACM Conference on Computer and Communications Security (CCS ’03), pp. 52–61. ACM Press, New York (2003)CrossRefGoogle Scholar
  8. 8.
    Asem, Y.M., Kara, A.: A computationally efficient key-hiding based group re-keying scheme for secure multicasting. International Journal of Computer and Applications, 65–73 (2006)Google Scholar
  9. 9.
    Eltoweissy, M., Wadaa, A., Olariu, S., Wilson, L.: Group Key Management Scheme for Large Scale Wireless Sensor Network. Journal of Ad-Hoc Networks (2004)Google Scholar
  10. 10.
    Younis, M., Ghumman, K., Eltoweissy, M.: Key Management in Wireless Ad Hoc Networks: Collusion Analysis and Prevention. In: IEEE (IPCCC’05), Phoenix Arizona, IEEE Computer Society Press, Los Alamitos (2005)Google Scholar
  11. 11.
    Chorzempa, M., Park, J.M., Eltoweissy, M.: SECK: Survivable and Efficient Keying in Wireless Sensor Networks. In: IEEE Workshop on Information Assurance in Wireless Sensor Networks WSNIA’2005, IEEE Computer Society Press, Los Alamitos (2005)Google Scholar
  12. 12.
    Younis, M., Ghumman, K., Eltoweissy, M.: Location aware Combinatorial Key Management Scheme for Clustered Sensor Networks. IEEE Trans. Parallel and Distrib. Sys. 2006 (to appear)Google Scholar
  13. 13.
    Kogan, N., Shavitt, Y., Wool, A.: A practical revocation scheme for broadcast encryption using smart cards. In: Proceedings of 2003 symposium on Security and Privacy (2003)Google Scholar
  14. 14.
    Naor, M.: Pinkas: Efficient trace and revoke schemes. In: Frankel, Y. (ed.) FC 2000. LNCS, vol. 1962, Springer, Heidelberg (2001)CrossRefGoogle Scholar
  15. 15.
    Deng, R.H., Gong, L., Lazar, A.A., Wang, W.: Authenticated key distribution and secure broadcast using no conventional encryption: A unified approach based on block codes. In: IEEE Globecom’95 (1995)Google Scholar
  16. 16.
    Fiat, A., Naor, M.: Broadcast encryption. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 480–491. Springer, Heidelberg (1994)Google Scholar
  17. 17.
    Du, W., Deng, J., Han, Y.S., Varshney, P.K.: Dynamic Key Management in Sensor Networks. Communication Magazine 44, 122–130 (2006)Google Scholar
  18. 18.
    Shamir, A.: How to share a secret. Communications of the ACM 22(11), 612–613 (1979)MATHCrossRefGoogle Scholar
  19. 19.
    Eltoweissy, M., Heydari, H., Morales, L., Sadborough, H.: Combinatorial Optimization of Key Management in Group Communications. Journal of Network and Systems Management: Special Issue on Network Security  (2004)Google Scholar
  20. 20.
    Liu, D., Ning, P.: Establishing pairwise keys in distributed sensor networks. In: ACM Conference on Computer and Communications Security (CCS’03), pp. 52–61. ACM Press, New York (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Faraz Idris Khan
    • 1
  • Hassan Jameel
    • 2
  • S. M. K. Raazi
    • 2
  • Adil Mehmood Khan
    • 2
  • Eui Nam Huh
    • 1
  1. 1.Internet Computing and Security Lab, Department of Computer Engineering, Kyung Hee University, 449-701 SuwonSouth Korea
  2. 2.Ubiquitous Computing Lab, Department of Computer Engineering, Kyung Hee University, 449-701 SuwonSouth Korea

Personalised recommendations