Monte Carlo is the only choice of physically correct method to compute the problem of global illumination in the field of realistic image synthesis. Reusing light transport paths is an interesting and effective tool to eliminate noise, which is one of the main problems of Monte Carlo based global illumination algorithms, such as Monte Carlo ray tracing. But reusing paths technique tends to group spike noise to form noise patches in the images. We propose an alternative way to implementing the reuse of paths to tackle this problem in this paper. Experimental results show that our new way is very promising.


Reusing paths Monte Carlo Global Illumination Ray tracing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bekaert, P., Sbert, M., Halton, J.: Accelerating Path Tracing by Re-Using Paths. In: Proceedings of Eurographics Workshop on Rendering 2002, pp. 125–134 (2002)Google Scholar
  2. 2.
    Greenberg, D.P.: A framework for realistic image synthesis. Communications of the ACM 42, 44–53 (1999)CrossRefGoogle Scholar
  3. 3.
    Jensen, H.W.: Realistic Image Synthesis Using Photon Mapping. A.K. Peters (2001)Google Scholar
  4. 4.
    Kajiya, J.T.: The rendering equation. Computer & Graphics 4, 143–150 (1986)CrossRefGoogle Scholar
  5. 5.
    Lafortune, E.P., Willems, Y.D.: Bi-directional path tracing. In: Santo, H.P. (ed.) Compugraphics’93 Conference Proceedings, Alvor, Portugal, pp. 145–153 (1993)Google Scholar
  6. 6.
    Veach, E., Guibas, L.J.: Optimally combining sampling techniques for Monte Carlo rendering. In: SIGGRAPH 95 Conference Proceedings, pp. 419–428 (1995)Google Scholar
  7. 7.
    Purgathofer, W.: A statistical method for adaptive stochastic sampling. Computer & Graphics, 157–162 (1987)Google Scholar
  8. 8.
    Veach, E., Guibas, L.J.: Metropolis light transport. In: SIGGRAPH 97 Conference Proceedings, pp. 65–76 (1997)Google Scholar
  9. 9.
    Ward, G.J., Heckbert, P.: Irradiance gradients. In: Proceedings of Third Eurographics Workshop on Rendering, pp. 85–98 (1992)Google Scholar
  10. 10.
    McCool, M.D.: Anisotropic diffusion for Monte Carlo noise reduction. ACM Transactions on Graphics 18, 171–194 (1999)CrossRefGoogle Scholar
  11. 11.
    Rushmeier, H.E., Ward, G.J.: Energy preserving non-linear filters. In: Proceedings of SIGGRAPH 94, pp. 131–138 (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Qing Xu
    • 1
  • Mateu Sbert
    • 2
  1. 1.Tianjin University, Tianjin 300072China
  2. 2.University of Girona, Girona 17003Spain

Personalised recommendations