Advertisement

A Ghost Cell-Based Data Structure for Multiresolution Meshes

  • Rui Rodrigues
  • José Morgado
  • Frutuoso Silva
  • Abel Gomes
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4706)

Abstract

Multiresolution meshes enable us to build representations of geometric objects at different Levels of Detail (LODs). We introduce a multiresolution scheme whose data structure allows us to separately restore the geometry and topology of a mesh during the refinement process. Additionally, we use a topological criterion (not a geometric criterion, as usual in the literature) to quickly simplify a mesh, what seems to make the corresponding simplification algorithm adequate for real-time applications such as, for example, on-line computer games.

Keywords

Memory Space Triangular Mesh Vertex Versus Geometric Criterion Genealogical Tree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Campagna, S., Kobbelt, L., Seidel, H.P.: Directed edges – A Scalable Representation for Triangle Meshes. J. Graph. Tools 3, 1–12 (1998)Google Scholar
  2. 2.
    Danovaro, E., de Floriani, L., Magillo, P., Puppo, E.: Representing Vertex-Based Simplicial Multi-Complexes. In: Bertrand, G., Imiya, A., Klette, R. (eds.) Digital and Image Geometry. LNCS, vol. 2243, pp. 128–147. Springer, Heidelberg (2002)Google Scholar
  3. 3.
    Dyn, N.: Interpolatory Subdivision Schemes. In: Iske, A., Quak, E., Floater, M. (eds.) Tutorials on Multiresolution in Geometric Modelling, pp. 25–50. Springer, Heidelberg (2002)Google Scholar
  4. 4.
    Edelsbrunner, H.: Algorithms in Combinatorial Geometry. Springer, Heidelberg (1987)zbMATHGoogle Scholar
  5. 5.
    El-Sana, J., Varshney, A.: Generalized View-Dependent Simplification. Comp. Graph. Forum 18, 83–94 (1999)CrossRefGoogle Scholar
  6. 6.
    de Floriani, L., Magillo, P.: Multiresolution Mesh Representation: Models and Data Structures. In: Iske, A., Quak, E., Floater, M. (eds.) Tutorials on Multiresolution in Geometric Modelling, pp. 363–418. Springer, Heidelberg (2002)Google Scholar
  7. 7.
    de Floriani, L., Magillo, P., Puppo, E., Sobrero, D.: A Multi-Resolution Topological Representation for Non-Manifold Meshes. In: Proc. 7th ACM Symp. Solid Modeling and Applications, pp. 159–170. ACM Press, New York (2002)Google Scholar
  8. 8.
    Garland, M., Heckbert, P.: Surface Simplification Using Quadric Error Metrics. In: Proc. SIGGRAPH’97, vol. 31, pp. 209–216. ACM Press, New York (1997)Google Scholar
  9. 9.
    Garland, M.: Multiresolution Modeling: Survey and Future Opportunities. In: Eurographics’99 State-of-Art Report. Eurographics Association (1999)Google Scholar
  10. 10.
    Guéziec, A., Taubin, G., Lazarus, F., Horn, W.: Simplicial Maps for Progressive Transmission of Polygonal Surfaces. In: Proc. 3rd ACM Symp. Virtual Reality Modeling Language, pp. 25–31. ACM Press, New York (1998)CrossRefGoogle Scholar
  11. 11.
    Hoppe, H.: Progressive Meshes. In: Proc. SIGGRAPH’96, vol. 30, pp. 99–108. ACM Press, New York (1996)Google Scholar
  12. 12.
    Hoppe, H.: View-Dependent Refinement of Progressive Meshes. In: Proc. SIGGRAPH’97, vol. 31, pp. 189–198. ACM Press, New York (1997)Google Scholar
  13. 13.
    Janich, K.: Topology. Undergraduate Texts in Mathematics. Springer, Heidelberg (1984)Google Scholar
  14. 14.
    Kallmann, M., Thalmann, D.: Star-Vertices: A Compact Representation for Planar Meshes with Adjacency Information. J. Graph. Tools 6, 7–18 (2001)Google Scholar
  15. 15.
    Loop, C.: Managing Adjacency in Triangular Meshes. Microsoft Research, Technical Report MSR-TR-2000-24 (2000)Google Scholar
  16. 16.
    Mäntyla, M.: An Introduction to Solid Modeling. Computer Science Press, New York (1988)Google Scholar
  17. 17.
    Ni, X., Bloor, S.: Performance evaluation of boundary data structures. IEEE Comp. Graph. and Appl. 14, 66–77 (1994)Google Scholar
  18. 18.
    Popovic, J., Hope, H.: Progressive Simplicial Complexes. In: Proc. SIGGRAPH’97, vol. 31, pp. 217–224. ACM Press, New York (1997)Google Scholar
  19. 19.
    Pupo, E.: Variable Resolution Terrain Surfaces. In: Proc. 8th Canadian Conf. on Comput. Geometry, Ottawa, Canada, August 12-15, pp. 202–210 (1996)Google Scholar
  20. 20.
    Sabin, M.: Subdivision of Box-Splines. In: Iske, A., Quak, E., Floater, M. (eds.) Tutorials on Multiresolution in Geometric Modelling, pp. 3–24. Springer, Heidelberg (2002)Google Scholar
  21. 21.
    Silva, F., Gomes, A.: Adjacency and Incidence Framework - A Data Structure for Efficient and Fast Management of Multiresolution Meshes. In: Proc. Int. Conf. Comp. Graph. and Int. Tech. in Australasia and South East Asia, pp. 159–166. ACM Press, New York (2003)CrossRefGoogle Scholar
  22. 22.
    Silva, F., Gomes, A.: Normal-Based Simplification Algorithm for Meshes. In: Proc. Theory and Practice of Comp. Graph, pp. 211–218. IEEE Computer Society Press, Los Alamitos (2004)CrossRefGoogle Scholar
  23. 23.
    Southern, R., Perkins, S., Steyn, B., Muller, A., Marais, P., Blake, E.: A Stateless Client for Progressive View-Dependent Transmission. In: Proc. 6th Int. Conf. on 3D Web Technology, pp. 43–50. ACM Press, New York (2001)CrossRefGoogle Scholar
  24. 24.
    Velho, L., de Figueredo, L., Gomes, J.: A Unified Approach for Hierarchical Adaptive Tesselation of Surfaces. ACM Transactions on Graphics 18, 329–360 (1999)CrossRefGoogle Scholar
  25. 25.
    Weiler, K.: The Radial Edge Structure: a Topological Representation for Non-Manifold Geometric Boundary Modeling. In: Wozny, M., McLaughlin, H., Encarnação, J. (eds.) Geometric Modeling for CAD Applications, pp. 3–36. Elsevier Science Publishers, North-Holland (1988)Google Scholar
  26. 26.
    Xia, J., El-Sana, J., Varshney, A.: AdaptiveReal-Time Level-of-Detail-Based Rendering for Polygonal Models. IEEE Trans. on Visual. and Comp. Graph 3, 171–183 (1997)CrossRefGoogle Scholar
  27. 27.
    Zorin, D., Schröder, P.: Subdivisions for Modeling and Animation. ACM SIGGRAPH 2000 Course Notes No.23. ACM Press, New York (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Rui Rodrigues
    • 1
  • José Morgado
    • 1
  • Frutuoso Silva
    • 1
  • Abel Gomes
    • 1
  1. 1.Universidade da Beira Interior, Departamento de Informática, Instituto de Telecomunicações, 6201-001 CovilhãPortugal

Personalised recommendations