Fractal Dimension Algorithm for Detecting Oil Spills Using RADARSAT-1 SAR

  • Maged Marghany
  • Mazlan Hashim
  • Arthur P. Cracknell
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4705)


This paper introduces a method for modification of the formula of the fractal box counting dimension. The method is based on the utilization of theprobability distribution formula in the fractal box count. The purpose of this method is to use it for the discrimination of oil spill areas from the surrounding features e.g., sea surface and look-alikes in RADARSAT-1 SAR data. The result shows that the new formula of the fractal box counting dimension is able to discriminate between oil spills and look-alike areas. The low wind area has the highest fractal dimension peak of 2.9, as compared to the oil slick and the surrounding rough sea. The maximum error standard deviation of low wind area is 0.68 which performs with fractal dimension value of 2.9.


Fractal algorithm Probability Density Function (PDF) RADARSAT-1 SAR image oil spill look-alikes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aiazzi, B., Alparone, L., Baronti, S., Garzelli, A.: Multiresolution Estimation of Fractal Dimension from Noisy Images. SPIE-IS&T Journal of Electronic Imaging 10, 339–348 (2001)CrossRefGoogle Scholar
  2. 2.
    Benelli, G., Garzelli, A.: A multi-resolution Approach to Oil-spills Detection in ERS-1 SAR Images. Image and Signal Processing for Remote Sensing 4, 145–156 (1998)Google Scholar
  3. 3.
    Benelli, G., Garzelli, A.: Oil-spill Detection in SAR Images by Fractal Dimension Estimation. In: Proceedings of Geoscience and Remote Sensing Symposium, IGARSS’99, Hamburg, Germany, 28 June-2 July 1999, vol. 2, pp. 1123–1126. IEEE Geoscience and Remote Sensing Society, USA (1999)Google Scholar
  4. 4.
    Bern, T.I., Wahl, T., Anderssen, T., Olsen, R.: Oil Spill Detection Using Satellite Based SAR; Experience from a Field Experiment. Photogrammetric Engineering and Remote Sensing 59, 423–428 (1993)Google Scholar
  5. 5.
    Bertacca, M., Berizzi, F., Mese, E.D.: A FARIMA-based Technique for Oil Slick and Low-wind Areas Discrimination in Sea SAR Imagery. IEEE Transactions on Geosciences and Remote Sensing 43, 2439–2484 (2005)CrossRefGoogle Scholar
  6. 6.
    Calaberesi, G., Del Frate, F., Lightenegger, J., Petrocchi, A., Trivero, P.: Neural Networks for the Oil Spill Detection Using ERS-SAR Data. In: Proceedings of Geoscience and Remote Sensing Symposium, IGARSS’99, Hamburg, Germany, 28 June-2 July 1999, vol. 1, pp. 215–217. IEEE Geoscience and Remote Sensing Society, USA (1999)Google Scholar
  7. 7.
    Fiscella, B., Giancaspro, A., Nirchio, F., Pavese, P., Trivero, P.: Oil Spill Detecting Using Marine SAR Images. International Journal of Remote Sensing 12, 3561–3566 (2000)CrossRefGoogle Scholar
  8. 8.
    Falconer, K.: Fractal geometry. John Wiley & Sons, New York (1990)MATHGoogle Scholar
  9. 9.
    Fukunaga, K.: Introduction to Statistical Pattern Recognition, 2nd edn. Academic Press, London (1990)MATHGoogle Scholar
  10. 10.
    Gade, M., Redondo, J.M.: Marine Pollution in European Coastal Waters Monitored by the ERS-2 SAR: A comprehensive Statistical Analysis. In: Proceedings of Geoscience and Remote Sensing Symposium, IGARSS’99, Hamburg, Germany, 28 June-2 July 1999, vol. 2, pp. 1375–1377. IEEE Geoscience and Remote Sensing Society, USA (1999)Google Scholar
  11. 11.
    Hashim, M., Ibrahim, A.L., Ahmad, S.: Mapping and Identifying Oil Spill Occurrences in Malaysian Water (Straits of Malacca and South China Sea) Using 2000-2005 Archived Radarsat-1 SAR. Evaluation Report, Department of Remote Sensing, Universiti Teknologi Malaysia, Skudai, Malaysia, 20pp, Unpublished (2006)Google Scholar
  12. 12.
    Henschel, M.H., Olsen, R.B., Hoyt, P., Vachon, P.W.: The Ocean Monitoring Workstation: Experience Gained with RADARSAT (CD-ROM proceedings). In: Proceedings of Geomatics in the Era of RADARSAT. Canadian Center of Remote Sensing, Ottawa, Canada, May 25-30, 1997, Canadian Center of Remote Sensing, Ottawa (1997)Google Scholar
  13. 13.
    Lu, J., Kwoh, L.K., Lim, H.: Mapping Oil Pollution from Space. Backscatter, 23–26 (2000)Google Scholar
  14. 14.
    Maragos, P., Sun, F.K.: Measuring the Fractal Dimension of Signals: Morphological Covers and Iterative Optimization. IEEE Transactions Signal Processing 41(1993), 108–121 (1993)MATHCrossRefGoogle Scholar
  15. 15.
    Maged, M., Mazlan, H.: Simulation of Oil Slick Trajectory Movements from the RADARSAT-1 SAR. Asian Journal of Geoinformatics 5, 17–27 (2005)Google Scholar
  16. 16.
    Milan, S., Vachav, H., Roger, B.: Image Processing Analysis and Machine Vision. Chapman and Hall Computing, New York (1993)Google Scholar
  17. 17.
    Sarkar, N., Chaudhuri, B.B.: An Efficient Differential Box-counting Approach to Compute Fractal Dimension of Image. IEEE Transactions Systems, Man. Cyber-net 24, 115–120 (1994)CrossRefGoogle Scholar
  18. 18.
    Redondo, J.M.: Fractal Description of Density Interfaces. Journal of Mathematics and its applications 5, 210–218 (1996)Google Scholar
  19. 19.
    Wornell, G.W., Oppenheim, A.: Estimation of fractal signals from noisy measurements using wavelets. IEEE Transactions Signal Processing 40, 611–623 (1992)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Maged Marghany
    • 1
  • Mazlan Hashim
    • 1
  • Arthur P. Cracknell
    • 1
  1. 1.Department of Remote Sensing, Faculty of Geoinformation Science and Engineering, Universiti Teknologi Malaysia, 81310 UTM, Skudai, Johore BahruMalaysia

Personalised recommendations