Advertisement

Abstract

This paper presents formulas for approximating the distribution of the cycle time of a job in a two-stage fork-join network in equilibrium. The key step is characterizing the departure process from the first node. Statistical tests justify that the approximate distribution is a good fit to the actual one. We discuss related approximations for m-stage networks, and present a formula for approximating the mean cycle time in a m-stage fork-join network.

Keywords and Phrases

Fork-join network queueing Palm probability communication network parallel processing supply chains 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baccelli, F., Makowski, A.M., Shwartz, A.: The fork-join queue and related systems with synchronization constraints: stochastic ordering and computable bounds. Adv. Appl. Probab. 21, 629–660 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Balsamo, S., Donatietllo, L., Van Dijk, N.M.: Bound performance models of heterogeneous parallel processing systems. IEEE Trans.Parallel. 9, 1041–1056 (1998)CrossRefGoogle Scholar
  3. 3.
    Bai, L., Fralix, B., Liu, L., Shang, W.: Inter-departure times in base-stock inventory-queues. QUESTA 47, 345–361 (2004)zbMATHMathSciNetGoogle Scholar
  4. 4.
    Burke, P.J.: The outpurt of a Queueing Syste. Opns. Res. 4, 699–704 (1956)MathSciNetGoogle Scholar
  5. 5.
    Daley, D.J.: Queueing output processes. Adv. Appl. Prob. 8, 395–415 (1976)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Disney, R.L., König, D.: Queueing networks: A survey of therir random processes. SIAM Rev. 27, 335–403 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Flatto, L., Hahn, S.: Two parallel queues created by arrivals with two demands I. SIAM J. Appl. Math. 44, 1041–1053 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Flatto, L.: Two parallel queues created by arrivals with two demands II. SIAM J. Appl. Math. 45, 861–878 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Knessl, C.: On the diffusion approximation to a fork and join queueing model. SIAM J. Appl. Math. 51, 160–171 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Ko, S., Serfozo, R.: Response times in M/M/s fork-join networks. Adv. Appl. Prob. 36, 854–871 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Ko, S., Serfozo, R.: Sojourn times in G/M/1 fork-join networks. Technical Report Georgia Tech (2006)Google Scholar
  12. 12.
    Law, A.M., Kelton, W.D.: Simulation Modeling and Analysis. McGraw-Hill, New York (1991)Google Scholar
  13. 13.
    Nelson, R., Tantawi, A.N.: Approximation analysis of fork/join synchronization in parallel queues. IEEE Trans. Comput. 37, 739–743 (1988)CrossRefGoogle Scholar
  14. 14.
    Nguyen, V.: Processing networks with parallel and sequential tasks: heavy traffic analysis and Brownian limits. Ann. Appl. Prob. 3, 28–55 (1993)zbMATHGoogle Scholar
  15. 15.
    Reynolds, J.F.: The covairance structure of queues and related processes- A study of recent work. Adv. Appl. Prob. 7, 383–415 (1975)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Serfozo, R.F.: Introduction to Stochastic Networks. Spinger-Verlag, New York (1999)zbMATHGoogle Scholar
  17. 17.
    Whitt, W.: Approximating a point process by a renewal process I: two basic methods. Opns. Res. 30, 125–147 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Whitt, W.: Approximations for departure processes and queues in series. Naval Res. Logistics Quarterly 31, 499–521 (1984)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Sung-Seok Ko
    • 1
  1. 1.Department of Industrial Engineering, Konkuk University 1 Hwayang-dong,Gwangjin-Gu, Seoul, 143-701Korea

Personalised recommendations