Nonadiabatic Ab Initio Surface-Hopping Dynamics Calculation in a Grid Environment – First Experiences

  • Matthias Ruckenbauer
  • Ivona Brandic
  • Siegfried Benkner
  • Wilfried Gansterer
  • Osvaldo Gervasi
  • Mario Barbatti
  • Hans Lischka
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4705)


In a joint effort between computer scientists and theoretical chemists new tools have been developed for Grid applications leading to the efficient management of large computational campaigns in the field of quantum chemical calculations. For that purpose, the Vienna Grid Environment (VGE) software has been successfully extended allowing efficient job submission, status control and data retrieval. In addition, the services of the Compchem Virtual Organization of Enabling Grids for E-science (EGEE) Grid environment have been used. Extensive photodynamical simulation runs using the software packages COLUMBUS and NEWTON-X have been performed on the cis-trans isomerization of a model retinal system, aiming at a detailed picture of the primary processes of vision.


Grid computing Grid middleware web services Quantum Chemistry Photodynamics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lischka, H., Dallos, M., Shepard, R.: Analytic MRCI gradient for excited states: formalism and application to the n- π* valence- and n-(3s,3p) Rydberg states of formaldehyde. Mol. Phys. 100, 1647–1658 (2002)CrossRefGoogle Scholar
  2. 2.
    Lischka, H., Dallos, M., Szalay, P.G., Yarkony, D.R., Shepard, R.: Analytic evaluation of nonadiabatic coupling terms at the MR-CI level. I: Formalism. Journal of Chemical Physics 120, 7322–7329 (2004)CrossRefGoogle Scholar
  3. 3.
    Dallos, M., Lischka, H., Shepard, R., Yarkony, D.R., Szalay, P.G.: Analytic evaluation of nonadiabatic coupling terms at the MR-CI level. II. Minima on the crossing seam: formaldehyde and the photodimerization of ethylene. Journal of Chemical Physics 120, 7330–7339 (2004)CrossRefGoogle Scholar
  4. 4.
    Lischka, H., Shepard, R., Brown, F.B., Shavitt, I.: New Implementation of the Graphical Unitary-Group Approach for Multi-Reference Direct Configuration-Interaction Calculations. International Journal of Quantum Chemistry, 91–100 (1981)Google Scholar
  5. 5.
    Lischka, H., Shepard, R., Pitzer, R.M., Shavitt, I., Dallos, M., Muller, T., Szalay, P.G., Seth, M., Kedziora, G.S., Yabushita, S., Zhang, Z.Y.: High-level multireference methods in the quantum-chemistry program system COLUMBUS: Analytic MR-CISD and MR-AQCC gradients and MR-AQCC-LRT for excited states, GUGA spin-orbit CI and parallel CI density. Physical Chemistry Chemical Physics 3, 664–673 (2001)CrossRefGoogle Scholar
  6. 6.
    Lischka, H., Shepard, R., Shavitt, I., Pitzer, R.M., Dallos, M., Mueller, T., Szalay, P.G., Brown, F.B., Ahlrichs, R., Boehm, H.J., Chang, A., Comeau, D.C., Gdanitz, R., Dachsel, H., Ehrhardt, C., Ernzerhof, M., Hoechtl, P., Irle, S., Kedziora, G., Kovar, T., Parasuk, V., Pepper, M.J.M., Scharf, P., Schiffer, H., Schindler, M., Schueler, M., Seth, M., Stahlberg, E.A., Zhao, J.-G., Yabushita, S., Zhang, Z., Barbatti, M., Matsika, S., Schuurmann, M., Yarkony, D.R., Brozell, S.R., Beck, E.V., Blaudeau, J.-P.: COLUMBUS, an ab initio electronic structure program, release 5.9.1 (2006),
  7. 7.
    Dachsel, H., Lischka, H., Shepard, R., Nieplocha, J., Harrison, R.J.: A Massively Parallel Multireference Configuration Interaction Program - the Parallel COLUMBUS Program. Journal of Computational Chemistry 18, 430–448 (1997)CrossRefGoogle Scholar
  8. 8.
  9. 9.
    Tannenbaum, T., Livny, M., Foster, I.T., Tuecke, S.: Condor-G: A computation management Agent for Multi-Intstitutional Grids. Cluster Computing 5(3), 237–246 (2002)CrossRefGoogle Scholar
  10. 10.
  11. 11.
  12. 12.
    Erwin, D.W., Snelling, D.F.: UNICORE: A Grid Computing Environment. In: Sakellariou, R., Keane, J.A., Gurd, J.R., Freeman, L. (eds.) Euro-Par 2001. LNCS, vol. 2150, pp. 825–834. Springer, Heidelberg (2001)Google Scholar
  13. 13.
    The GRIDLAB project,
  14. 14.
    The GRASP Project,
  15. 15.
    Baldonado, M., Chang, C.-C.K., Gravano, L., Paepcke, A.: The Stanford Digital Library Metadata Architecture. International Journal on Digitital Libraries 1, 108–121 (1997)CrossRefGoogle Scholar
  16. 16.
    Bruce, K.B., Cardelli, L., Pierce, B.C.: Comparing Object Encodings. In: Păun, G., Salomaa, A. (eds.) New Trends in Formal Languages. LNCS, vol. 1218, pp. 415–438. Springer, Heidelberg (1997)Google Scholar
  17. 17.
    van Leeuwen, J. (ed.): Computer Science Today. LNCS, vol. 1000. Springer, Heidelberg (1995)zbMATHGoogle Scholar
  18. 18.
    Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs. Springer, Heidelberg (1996)zbMATHGoogle Scholar
  19. 19.
    Barbatti, M., Granucci, G., Persico, M., Ruckenbauer, M., Vazdar, M., Eckert-Maksic, M., Lischka, H.: The on-the-fly surface-hopping program system Newton-X: Application to ab initio simulation of the nonadiabatic photodynamics of benchmark systems. Journal of Photochemistry and Photobiology A: Chemistry (2007) (in press)doi:10.1016/j.jphotochem.2006.1012.1008Google Scholar
  20. 20.
    Barbatti, M., Granucci, G., Lischka, H., Ruckenbauer, M., Persico, M.: NEWTON-X: a package for Newtonian dynamics close to the crossing seam, version 0.13b (2007),
  21. 21.
    Swope, W.C., Andersen, H.C., Berens, P.H., Wilson, K.R.: A Computer-Simulation Method for the Calculation of Equilibrium-Constants for the Formation of Physical Clusters of Molecules - Application to Small Water Clusters. Journal of Chemical Physics 76, 637–649 (1982)CrossRefGoogle Scholar
  22. 22.
    Tully, J.C.: Mixed quantum-classical dynamics. Faraday Discussions, 407–419 (1998)Google Scholar
  23. 23.
    Tully, J.C.: Molecular-Dynamics with Electronic-Transitions. Journal of Chemical Physics 93, 1061–1071 (1990)CrossRefGoogle Scholar
  24. 24.
    Ahlrichs, R., Bär, M., Haser, M., Horn, H., Kolmel, C.: Electronic-Structure Calculations on Workstation Computers - the Program System Turbomole. Chemical Physics Letters 162, 165–169 (1989)CrossRefGoogle Scholar
  25. 25.
    Hättig, C.: Geometry optimizations with the coupled-cluster model CC2 using the resolution-of-the-identity approximation. Journal of Chemical Physics 118, 7751–7761 (2003)CrossRefGoogle Scholar
  26. 26.
    Kohn, A., Hättig, C.: Analytic gradients for excited states in the coupled-cluster model CC2 employing the resolution-of-the-identity approximation. Journal of Chemical Physics 119, 5021–5036 (2003)CrossRefGoogle Scholar
  27. 27.
    Bauernschmitt, R., Ahlrichs, R.: Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory. Chemical Physics Letters 256, 454–464 (1996)CrossRefGoogle Scholar
  28. 28.
    Bauernschmitt, R., Haser, M., Treutler, O., Ahlrichs, R.: Calculation of excitation energies within time-dependent density functional theory using auxiliary basis set expansions. Chemical Physics Letters 264, 573–578 (1997)CrossRefGoogle Scholar
  29. 29.
    Furche, F., Ahlrichs, R.: Adiabatic time-dependent density functional methods for excited state properties. Journal of Chemical Physics 117, 7433–7447 (2002)CrossRefGoogle Scholar
  30. 30.
    Stanton, J.F., Gauss, J., Watts, J.D., Lauderdale, W.J., Bartlett, R.J.: The Aces-II Program System. International Journal of Quantum Chemistry, 879–894 (1992)Google Scholar
  31. 31.
    Weingart, O., Migani, A., Olivucci, M., Robb, M., Buss, V., Hunt, P.: Probing the photochemical funnel of a retinal chromophore model via zero-point energy sampling semiclassical dynamics. Journal of Physical Chemistry A 108, 4685–4693 (2004)Google Scholar
  32. 32.
    Ciminelli, C., Granucci, G., Persico, M.: The photoisomerization mechanism of azobenzene: A semiclassical simulation of nonadiabatic dynamics. Chemistry-A European Journal 10, 2327–2341 (2004)CrossRefGoogle Scholar
  33. 33.
    Gonzalez-Luque, R., Garavelli, M., Bernardi, F., Merchan, M., Robb, M., Olivucci, M.: Computational evidence in favor of a two-state, two-mode model of the retinal chromophore photoisomerization. Proceedings of the National Academy of Sciences of the United States of America 97, 9379–9384 (2000)CrossRefGoogle Scholar
  34. 34.
    Aquino, A., Barbatti, M., Lischka, H.: Excited-state properties and environmental effects for protonated Schiff bases: A theoretical study. CHEMPHYSCHEM 7, 2089–2096 (2006)CrossRefGoogle Scholar
  35. 35.
    Francl, M.M., Pietro, W.J., Hehre, H.J., Binkley, J.S., Gordon, M.S., DeFrees, D.J., Pople, J.A.: Self-Consistent Molecular-Orbital methods.23. A Polarization-Type Basis Set for 2nd-Row Elements. Journal of Chemical Physics 77, 3654–3665 (1982)CrossRefGoogle Scholar
  36. 36.
    Barbatti, M., Ruckenbauer, M., Szymczak, J., Aquino, A.J.A., Lischka, H.: Nonadiabatic excited-state dynamics of polar pi-systems and related model compounds of biological relevance. Physical Chemistry Chemical Physics (to be submitted)Google Scholar
  37. 37.
    Manaa, M.R., Yarkony, D.R.: Journal of Chemical Physics 99, 5251 (1993)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Matthias Ruckenbauer
    • 1
    • 2
  • Ivona Brandic
    • 1
  • Siegfried Benkner
    • 1
  • Wilfried Gansterer
    • 1
  • Osvaldo Gervasi
    • 3
  • Mario Barbatti
    • 2
  • Hans Lischka
    • 2
  1. 1.University of Vienna, Research Lab Computational Technologies and Applications 
  2. 2.University of Vienna, Department of Theoretical Chemistry 
  3. 3.University of Perugia, Department of Mathematics and Computer Science 

Personalised recommendations