Evaluación de dos Métodos para la Segmentación del Ancho de la Onda T en el ECG

  • Miguel Altuve
  • O. Casanova
  • S. Wong
  • G. Passariello
  • A. Hernandez
  • G. Carrault
Part of the IFMBE Proceedings book series (IFMBE, volume 18)

Palabras claves

ECG onda T segmentación repolarización ventricular procesamiento de señales 

Abstract

In this work, two methods for T wave segmentations were compared: classic method based on differentiator filter and the method based on slope estimation. This study was carried out on simulated electrocardiogram (ECG) signals with four simulated added noise types: (a) baseline wander due to breathing (0–0.5 Hz), (b) motion artifacts (3–5 Hz), (c) electromyography and motion artifacts (Gaussian white noise), (c) mixed effects (sum of the previous noises). Four conditions of Signal to Noise Ratio (SNR) were computed: 5, 10, 15, 20 and 25 dB. The beginning, the end and the width of the T wave was determined with both methods and the mean absolute error was computed for all signals. The slope estimation method shows a T wave width larger than the obtained with the differentiator filter. Both methods showed that the end location is easier to find than the beginning of the T wave. The achieved performance shows a satisfying behavior of both methods in favorable conditions of SNR. However, the differentiator filter method shows better performance that the method base on slope estimation. The noise due to motion artifacts affect greatly the mean absolute error in the beginning and end location of the T wave. An important increase of T wave width variability induced by the artifacts was observed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Referencias

  1. 1.
    Mincholé A, Martínez JP, Arini P, Risk M, Laguna P. (2006) T Wave Width Alterations during Valsalva Maneuver in Diabetic Patients. Proceeding Computers in Cardiology IEEE Computer Society Press, 33:709–712.Google Scholar
  2. 2.
    Arini PD, Martinez JP, Laguna P. (2006) Evolution of T Wave Width During Severe Ischemia Generated by Percutaneous Transluminal Coronary Angioplasty. Proceeding Computers in Cardiology IEEE Computer Society Press, 33:713–716.Google Scholar
  3. 3.
    Laguna P, Thakor NV, Caminal P, Jane R, Yoon HR, Bayes de Luna A, Marti V, Guindo, J. (1990) New algorithm for QT interval analysis in 24-hour Holter ECG: performance and applications. Med Biol Eng Comput, 28(1):67–73CrossRefGoogle Scholar
  4. 4.
    Lepeschkin E, Surawicz B. (1952) The Measurement of the Q-T Interval of the Electrocardiogram. Circulation, 6:378–388.Google Scholar
  5. 5.
    Tikkanen PE, Sellin LC, Kinnunen HO, Huikuri HV. (1999) Using simulated noise to define optimal QT intervals for computer analysis of ambulatory ECG. Med Eng Phys, 21(11):15–25CrossRefGoogle Scholar
  6. 6.
    Pan J, Tompkins WJ. (1985) A real-time QRS detection algorithm. IEEE Trans. Biomed. Eng., 32(3): 230–236CrossRefGoogle Scholar
  7. 7.
    Porta A, Baselli G, Lombardi F, Cerutti S, Antolini R, Del Greco M, Ravelli F, Nollo G. (1998) Performance assessment of standard algorithms for dynamic R-T interval measurement: comparison between R-T apex and R-T end approach. Medical & Biological Engineering & Computing, 36(1):35–42.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Miguel Altuve
    • 1
    • 3
  • O. Casanova
    • 1
  • S. Wong
    • 1
  • G. Passariello
    • 1
  • A. Hernandez
    • 2
  • G. Carrault
    • 2
  1. 1.Grupo de Bioingenieria y Biofísica AplicadaUniversidad Simón BolívarCaracasVenezuela
  2. 2.Laboratoire Traitement du Signal et de l’ImageUniversité de Rennes IRennesFrancia
  3. 3.Universidad Simón BolívarCaracasVenezuela

Personalised recommendations