Obtaining Energy Expenditure and Physical Activity from Acceleration Signals for Context-aware Evaluation of Cardiovascular Parameters

  • Luciana Caldas Jatobá
  • U. Großmann
  • J. Ottenbacher
  • S. Härtel
  • B. von Haaren
  • W. Stork
  • K. D. Müller-Glaser
  • K. Bös
Part of the IFMBE Proceedings book series (IFMBE, volume 18)

Abstract

This work presents the design and development of an online daily-life activity measurement system. This system has been conceptualized to be used along with other vital parameter sensor-systems, e.g. blood-pressure and electrocardiogram (ECG), to provide the necessary context information for the evaluation of the health status of cardiovascular risk patients who are not hospitalized, but must be permanently monitored during their daily routines. The activity and energy expenditure are captured and estimated from accelerometers, which are placed on different points of the body. The activity, the ECG and the blood pressure are sent to a base station (smart phone or a PDA) and from there to a data base, to which the physicians have access. Thus it is possible to continuously analyze the vital data of a cardiovascular patient taking into consideration the activity or physical strain.

Keywords

Activity monitoring energy expenditure context-awareness cardiovascular data 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Context aware cardiac long-term monitoring (CALM) project at http://www.itiv.org/calmGoogle Scholar
  2. 2.
    Ottenbacher J, Jatobá L, Großmann U, Stork W, Müller-Glaser K. (2006) ECG Electrodes for a Context Aware Cardiac Permanent Monitoring System. IFMBE, World Congress on Med. Phys. & Biomed. Eng., Seoul, South KoreaGoogle Scholar
  3. 3.
    Ottenbacher J, Jatobá L, Großmann U, Stork W, Müller-Glaser K (2006) Mobiles dauerhaftes EKG Monitoring. BMT 2006, ETH Zürich, SwitzerlandGoogle Scholar
  4. 4.
    Jatobá L, Großmann U, Ottenbacher J, Stork W, Müller-Glaser K (2006) Physical-Activity as Context-Information for Long-term Monitoring of Cardiovascular Diseases. IFMBE, World Congress on Med. Phys. & Biomed. Eng., Seoul, South KoreaGoogle Scholar
  5. 5.
    Jatobá L, Großmann U, Ottenbacher J, Stork W, Müller-Glaser K (2006) Using Adaptive Neuro-Fuzzy Inference System for Online Classification of Movement Patterns. BMT 2006, ETH Zürich, SwitzerlandGoogle Scholar
  6. 6.
    Jang J, Sun C., Mizutani, E (1997) Neuro-Fuzzy and Soft Computing. A Computational Approach to Learning and Machine Intelligence. Prentice HallGoogle Scholar
  7. 7.
    Jatobá L, Großmann U, Ottenbacher J, Stork W, Müller-Glaser K (2007) Development of a Self-Constructing Neuro-Fuzzy Inference System for Online Classification of Physical Movements, Healthcom 2007, Taipei, Taiwan “in pressGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Luciana Caldas Jatobá
    • 1
  • U. Großmann
    • 1
  • J. Ottenbacher
    • 1
  • S. Härtel
    • 2
  • B. von Haaren
    • 2
  • W. Stork
    • 1
  • K. D. Müller-Glaser
    • 1
  • K. Bös
    • 2
  1. 1.Institute for Information Processing TechnologyUniversity of KarlsruheKarlsruheGermany
  2. 2.Institute for Sports and Exercise ScienceUniversity of KarlsruheKarlsruheGermany

Personalised recommendations