Efficient Parallel Simulation of Large-Scale Neuronal Networks on Clusters of Multiprocessor Computers

  • Hans E. Plesser
  • Jochen M. Eppler
  • Abigail Morrison
  • Markus Diesmann
  • Marc-Oliver Gewaltig
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4641)

Abstract

To understand the principles of information processing in the brain, we depend on models with more than 105 neurons and 109 connections. These networks can be described as graphs of threshold elements that exchange point events over their connections.

From the computer science perspective, the key challenges are to represent the connections succinctly; to transmit events and update neuron states efficiently; and to provide a comfortable user interface. We present here the neural simulation tool NEST, a neuronal network simulator which addresses all these requirements. To simulate very large networks with acceptable time and memory requirements, NEST uses a hybrid strategy, combining distributed simulation across cluster nodes (MPI) with thread-based simulation on each computer. Benchmark simulations of a computationally hard biological neuronal network model demonstrate that hybrid parallelization yields significant performance benefits on clusters of multi-core computers, compared to purely MPI-based distributed simulation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Braitenberg, V., Schüz, A.: Cortex: Statistics and Geometry of Neuronal Connectivity, 2nd edn. Springer, Berlin (1998)Google Scholar
  2. 2.
    Gewaltig, M.O., Diesmann, M.: NEST. Scholarpedia (2007)Google Scholar
  3. 3.
    Message Passing Interface Forum: MPI: A message-passing interface standard. Technical Report UT-CS-94-230, University of Tennessee (1994)Google Scholar
  4. 4.
    Lewis, B., Berg, D.J.: Multithreaded programming with pthreads. Sun Microsystems, Mountain View (1998)Google Scholar
  5. 5.
    Knuth, D.E.: The Art of Computer Programming, 3rd edn., vol. 2. Addison-Wesley, Reading, MA (1998)Google Scholar
  6. 6.
    Thomson, A.M., Deuchars, J.: Temporal and spatial properties of local circuits in neocortex. Trends Neurosci. 17, 119–126 (1994)CrossRefGoogle Scholar
  7. 7.
    Bi, G.Q., Poo, M.M.: Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J. Neurosci. 18, 10464–10472 (1998)Google Scholar
  8. 8.
    Morrison, A., Aertsen, A., Diesmann, M.: Spike-time dependent plasticity in balance recurrent networks. Neural Comput. 19, 1437–1467 (2007)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Zeigler, B.P., Praehofer, H., Kim, T.G.: Theory of Modeling and Simulation, 2nd edn. Academic Press, Amsterdam (2000)Google Scholar
  10. 10.
    Brette, R., et al.: Simulation of networks of spiking neurons: A review of tools and strategies. J. Comput. Neurosci. (in press, 2007)Google Scholar
  11. 11.
    Morrison, A., Straube, S., Plesser, H.E., Diesmann, M.: Exact subthreshold integration with continuous spike times in discrete time neural network simulations. Neural Comput. 19, 47–79 (2007)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Lamport, L.: Time, clocks, and the ordering of events in a distributed system. Communications of the ACM 21, 558–565 (1978)MATHCrossRefGoogle Scholar
  13. 13.
    Lazzaro, J.P., Wawrzynek, J., Mahowald, M., Sivilotti, M., Gillespie, D.: Silicon auditory processors as computer peripherals. IEEE Transactions on Neural Networks 4, 523–528 (1993)CrossRefGoogle Scholar
  14. 14.
    Morrison, A., Mehring, C., Geisel, T., Aertsen, A., Diesmann, M.: Advancing the boundaries of high connectivity network simulation with distributed computing. Neural Comput. 17, 1776–1801 (2005)MATHCrossRefGoogle Scholar
  15. 15.
    Tam, A., Wang, C.: Efficient scheduling of complete exchange on clusters. In: 13th International Conference on Parallel and Distributed Computing Systems (PDCS 2000), Las Vegas (2000)Google Scholar
  16. 16.
    Gross, J., Yellen, J.: Graph Theory and its Applications. CRC Press, Boca Raton, USA (1999)MATHGoogle Scholar
  17. 17.
    Brunel, N.: Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. J. Comp. Neurosci. 8, 183–208 (2000)MATHCrossRefGoogle Scholar
  18. 18.
    Woll, A.: Performance analysis of an MPI- and thread-parallel neural network simulator. Master’s thesis, Norwegian University of Life Sciences (2007)Google Scholar
  19. 19.
    Djurfeldt, M., Johansson, C., Ekeberg, Ö., Rehn, M., Lundqvist, M., Lansner, A.: Massively parallel simulation of brain-scale neuronal network models. Technical Report Technical Report TRITA-NA-P0513, KTH, School of Computer Science and Communication Stockholm, Stockholm (2005)Google Scholar
  20. 20.
    Migliore, M., Cannia, C., Lytton, W.W., Markram, H., Hines, M.: Parallel network simulations with NEURON. J. Comp. Neurosci. 21, 119–223 (2006)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Hans E. Plesser
    • 1
  • Jochen M. Eppler
    • 2
    • 3
  • Abigail Morrison
    • 4
  • Markus Diesmann
    • 3
    • 4
  • Marc-Oliver Gewaltig
    • 2
    • 3
  1. 1.Dept. of Mathematical Sciences and Technology, Norwegian University of Life Sciences, PO Box 5003, 1432 ÅsNorway
  2. 2.Honda Research Institute, Offenbach/MainGermany
  3. 3.Bernstein Center for Computational Neuroscience, Albert-Ludwigs-University, FreiburgGermany
  4. 4.RIKEN Brain Science Institute, Wako-shi, SaitamaJapan

Personalised recommendations