Advertisement

SymGrid: A Framework for Symbolic Computation on the Grid

  • Kevin Hammond
  • Abdallah Al Zain
  • Gene Cooperman
  • Dana Petcu
  • Phil Trinder
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4641)

Abstract

This paper introduces the design of SymGrid, a new Grid framework that will, for the first time, allow multiple invocations of symbolic computing applications to interact via the Grid. SymGrid is designed to support the specific needs of symbolic computation, including computational steering (greater interactivity), complex data structures, and domain-specific computational patterns (for irregular parallelism). A key issue is heterogeneity: SymGrid is designed to orchestrate components from different symbolic systems into a single coherent (possibly parallel) Grid application, building on the OpenMath standard for data exchange between mathematically-oriented applications. The work is being developed as part of a major EU infrastructure project.

Keywords

Symbolic Computation Grid Service Symbolic System Complex Data Structure Algorithmic Skeleton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dean, J.: Experiences with MapReduce, an abstraction for large-scale computation. In: Proc. PACT 2006 – Intl. Conf. on Parallel Architectures and Compilation Techniques, p. 1 (2006)Google Scholar
  2. 2.
    Dean, J., Ghemawat, S.: MapReduce: Simplified data processing on large clusters. In: Proc. OSDI 2004 – Sixth Symp. on Operating System Design and Implementation, pp. 137–150 (2004)Google Scholar
  3. 3.
    Char, B.W., et al.: Maple V Language Reference Manual. Maple Publishing, Waterloo, Canada (1991)Google Scholar
  4. 4.
    Group, T.G.: Gap – groups, algorithms, and programming, version 4.2 St Andrews (2000), http://www.gap-system.org/gap
  5. 5.
    Daberkow, M., Fieker, C., Klüners, J., Pohst, M., Roegner, K., Schörnig, M., Wildanger, K.: Kant v4. J. Symb. Comput. 24(3/4), 267–283 (1997)zbMATHCrossRefGoogle Scholar
  6. 6.
    Morisse, K., Kemper, A.: The Computer Algebra System MuPAD. Euromath Bulletin 1(2), 95–102 (1994)zbMATHGoogle Scholar
  7. 7.
    Al Zain, A., Trinder, P., Loidl, H.W., Michaelson, G.: Managing Heterogeneity in a Grid Parallel Haskell. J. Scalable Comp.: Practice and Experience 6(4) (2006)Google Scholar
  8. 8.
    Cooperman, G.: STAR/MPI: Binding a parallel library to interactive symbolic algebra systems. In: ISSAC 1995. Proc. Intl. Symp. on Symbolic and Algebraic Computation. Lecture Notes in Control and Information Sciences, vol. 249, pp. 126–132. ACM Press, New York (1995)CrossRefGoogle Scholar
  9. 9.
    Cooperman, G.: GAP/MPI: Facilitating parallelism. In: Proc. DIMACS Workshop on Groups and Computation II. DIMACS Series in Discrete Maths. and Theoretical Comp. Sci., vol. 28, pp. 69–84. AMS, Providence, RI (1997)Google Scholar
  10. 10.
    Petcu, D., Paprycki, M., Dubu, D.: Design and Implementation of a Grid Extension of Maple. Scientific Programming 13(2), 137–149 (2005)Google Scholar
  11. 11.
    The OpenMath Format (2007), http://www.openmath.org/
  12. 12.
    Cole, M.I.: Algorithmic Skeletons. In: Hammond, K., Michaelson, G. (eds.) Research Directions in Parallel Functional Programming; ch.13, pp. 289–304. Springer, Heidelberg (1999)Google Scholar
  13. 13.
    Alt, M., Dünnweber, J., Müller, J., Gorlatch, S.: HOCs: Higher-Order Components for grids. In: Getov, T., Kielmann, T. (eds.) Components Models and Systems for Grid Applications. CoreGRID, pp. 157–166 (2004)Google Scholar
  14. 14.
    Cole, M.: Algorithmic Skeletons: Structured Management of Parallel Computation. The MIT Press, Cambridge (1989)zbMATHGoogle Scholar
  15. 15.
    Cooperman, G.: Parallel GAP: Mature interactive parallel. Groups and computation, III (Columbus, OH, 1999) de Gruyter, Berlin (2001)Google Scholar
  16. 16.
    Roch, L., Villard, G.: Parallel computer algebra. In: ISSAC 1997, IMAG Grenoble, France (1997) (Preprint)Google Scholar
  17. 17.
    Amrheim, B., Gloor, O., Küchlin, W.: A case study of multithreaded Gröbner basis completion. In: In Proc. of ISSAC 1996, pp. 95–102. ACM Press, New York (1996)CrossRefGoogle Scholar
  18. 18.
    Bündgen, R., Göbel, M., Küchlin, W.: Multi-threaded AC term re-writing. In: Proc. PASCO 1994, vol. 5, pp. 84–93. World Scientific, Singapore (1994)Google Scholar
  19. 19.
    Michler, G.O.: High performance computations in group representation theory. Institut fur Experimentelle Mathematik, Univerisitat GH Essen (1998) ( Preprint)Google Scholar
  20. 20.
    Bernardin, L.: Maple on a massively parallel, distributed memory machine. In: Proc. PASCO 1997, pp. 217–222. ACM Press, New York (1997)CrossRefGoogle Scholar
  21. 21.
    Char, B.: A user’s guide to Sugarbush — Parallel Maple through Linda. Technical report, Drexel University, Dept. of Mathematics and Comp. Sci. (1994)Google Scholar
  22. 22.
    Chan, K., Díaz, A., Kaltofen, E.: A Distributed Approach to Problem Solving in Maple. In: Proc. 5th Maple Summer Workshop and Symp., pp. 13–21 (1994)Google Scholar
  23. 23.
    Küchlin, W.: PARSAC-2: A parallel SAC-2 based on threads. In: Sakata, S. (ed.) AAECC-8 1990. LNCS, vol. 508, pp. 341–353. Springer, Heidelberg (1991)Google Scholar
  24. 24.
  25. 25.
  26. 26.
    Delaitre, T., Goyeneche, A., Kacsuk, P., Kiss, T., Terstyanszky, G., Winter, S.: GEMLCA: Grid Execution Management for Legacy Code Architecture Design. In: Proc. 30th EUROMICRO Conference, pp. 305–315 (2004)Google Scholar
  27. 27.
    Agrawal, S., Dongarra, J., Seymour, K., Vadhiyar, S.: NetSolve: past, present, and future; a look at a Grid enabled server. In: Making the Global Infrastructure a Reality, pp. 613–622. Wiley, Chichester (2003)Google Scholar
  28. 28.
    Geodise (2007), http://www.geodise.org/
  29. 29.
    Tepeneu, D., Ida, T.: MathGridLink – Connecting Mathematica to the Grid. In: Proc. IMS 2004, Banff, Alberta (2004)Google Scholar
  30. 30.
  31. 31.
    Petcu, D., ¸Tepeneu, D., Paprzycki, M., Ida, I.: In: Engineering the Grid: status and perspective, pp. 91–107, American Scientific Publishers (2006)Google Scholar
  32. 32.
    Cooperman, G., Ansel, J., Ma, X.: Transparent adaptive library-based checkpointing for master-worker style parallelism. In: CCGrid 2006. Proc. IEEE Intl. Symp. on Cluster Computing and the Grid, pp. 283–291. IEEE Computer Society Press, Los Alamitos (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Kevin Hammond
    • 1
  • Abdallah Al Zain
    • 2
  • Gene Cooperman
    • 3
  • Dana Petcu
    • 4
  • Phil Trinder
    • 2
  1. 1.School of Computer Science, University of St Andrews, St AndrewsUK
  2. 2.Dept. of Mathematics and Comp. Sci., Heriot-Watt University, EdinburghUK
  3. 3.College of Computer Science, Northeastern University, BostonUSA
  4. 4.Institute e-Austria, TimişoaraRomania

Personalised recommendations