Truth Values Algebras and Proof Normalization

  • Gilles Dowek
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4502)

Abstract

We extend the notion of Heyting algebra to a notion of truth values algebra and prove that a theory is consistent if and only if it has a \(\mathcal {B}\)-valued model for some non trivial truth values algebra \(\mathcal {B}\). A theory that has a \(\mathcal {B}\)-valued model for all truth values algebras \(\mathcal {B}\) is said to be super-consistent. We prove that super-consistency is a model-theoretic sufficient condition for strong normalization.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andrews, P.B.: Resolution in type theory. The Journal of Symbolic Logic 36(3), 414–432 (1971)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    De Marco, M., Lipton, J.: Completeness and cut-elimination in the intuitionistic theory of types. Journal of Logic and Computation 15, 821–854 (2005)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Dowek, G., Hardin, T., Kirchner, C.: Theorem proving modulo. Journal of Automated Reasoning 31, 32–72 (2003)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Dowek, G., Hardin, T., Kirchner, C.: HOL-lambda-sigma: an intentional first-order expression of higher-order logic. Mathematical Structures in Computer Science 11, 1–25 (2001)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Dowek, G., Werner, B.: Proof normalization modulo. The Journal of Symbolic Logic 68(4), 1289–1316 (2003)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Dowek, G., Werner, B.: Arithmetic as a theory modulo. In: Giesl, J. (ed.) RTA 2005. LNCS, vol. 3467, pp. 423–437. Springer, Heidelberg (2005)Google Scholar
  7. 7.
    Girard, J.-Y.: Une extension de l’interprétation de Gödel à l’analyse, et son application à l’élimination des coupures dans l’analyse et la théorie des types. In: Fenstad, J. (ed.) 2nd Scandinavian Logic Symposium, pp. 63–92. North Holland (1971)Google Scholar
  8. 8.
    Hermant, O.: A model based cut elimination proof. In: 2nd St-Petersbourg Days in Logic and Computability (2003)Google Scholar
  9. 9.
    Hermant, O.: Méthodes sémantiques en déduction modulo. Doctoral Thesis. Université de Paris 7 (2005)Google Scholar
  10. 10.
    Hermant, O.: Semantic cut elimination in the intuitionistic sequent calculus. In: Urzyczyn, P. (ed.) TLCA 2005. LNCS, vol. 3461, pp. 221–233. Springer, Heidelberg (2005)Google Scholar
  11. 11.
    Okada, M.: A uniform semantic proof for cut elimination and completeness of various first and higher order logics. Theoretical Computer Science 281, 471–498 (2002)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Parigot, M.: Strong normalization for the second orclassical natural deduction. Logic in Computer Science, pp. 39–46 (1993)Google Scholar
  13. 13.
    Prawitz, D.: Hauptsatz for higher order logic. The Journal of Symbolic Logic 33, 452–457 (1968)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Rasiowa, H., Sikorski, R.: The mathematics of metamathematics. Polish Scientific Publishers (1963)Google Scholar
  15. 15.
    Tait, W.W.: A non constructive proof of Gentzen’s Hauptsatz for second order predicate logic. Bulletin of the American Mathematical Society 72, 980–983 (1966)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Tait, W.W.: Intentional interpretations of functionals of finite type I. The Journal of Symbolic Logic 32, 198–212 (1967)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Takahashi, M.o.: A proof of cut-elimination theorem in simple type theory. Journal of the Mathematical Society of Japan 19, 399–410 (1967)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Gilles Dowek
    • 1
  1. 1.École polytechnique and INRIA, LIX, École polytechnique, 91128 Palaiseau CedexFrance

Personalised recommendations