Fast Reflexive Arithmetic Tactics the Linear Case and Beyond

  • Frédéric Besson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4502)

Abstract

When goals fall in decidable logic fragments, users of proof-assistants expect automation. However, despite the availability of decision procedures, automation does not come for free. The reason is that decision procedures do not generate proof terms. In this paper, we show how to design efficient and lightweight reflexive tactics for a hierarchy of quantifier-free fragments of integer arithmetics. The tactics can cope with a wide class of linear and non-linear goals. For each logic fragment, off-the-shelf algorithms generate certificates of infeasibility that are then validated by straightforward reflexive checkers proved correct inside the proof-assistant. This approach has been prototyped using the Coq proof-assistant. Preliminary experiments are promising as the tactics run fast and produce small proof terms.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bellman, R.: On a routing problem. In Quarterly of Applied Mathematics 16, 87–90 (1958)MATHGoogle Scholar
  2. 2.
    Bertot, Y., Casteran, P.: Interactive Theorem Proving and Program Development. Coq’Art: the Calculus of Inductive Constructions. Springer, Heidelberg (2004)MATHGoogle Scholar
  3. 3.
    Besson, F., Jensen, T., Pichardie, D.: A PCC Architecture based on Certified Abstract Interpretation. In: Proc. of 1st Int. Workshop on Emerging Applications of Abstract Interpretation, ENTCS, Springer, Heidelberg (2006)Google Scholar
  4. 4.
    Besson, F., Jensen, T., Pichardie, D.: Proof-Carrying Code from Certified Abstract Interpretation and Fixpoint Compression. Theoretical Computer Science 364, 273–291 (2006)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Borchers, B.: Csdp, 2.3 user’s guide. Optimization Methods and Software 11(2), 597–611 (1999)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Cachera, D., Jensen, T., Pichardie, D., Rusu, V.: Extracting a data flow analyser in constructive logic. Theor. Comput. Sci. 342(1), 56–78 (2005)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Chaieb, A., Nipkow, T.: Verifying and reflecting quantifier elimination for presburger arithmetic. In: Sutcliffe, G., Voronkov, A. (eds.) LPAR 2005. LNCS (LNAI), vol. 3835, pp. 367–380. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Crégut, P.: Une procédure de décision réflexive pour un fragment de l’arithmétique de presburger. In Journées Francophones des Langages Applicatifs (2004)Google Scholar
  9. 9.
    The Coq development team: The coq proof assistant - reference manual v 8.1Google Scholar
  10. 10.
    Déharbe, D., Ranise, S.: Light-weight theorem proving for debugging and verifying units of code. In: 1st IEEE Int. Conf. on Software Engineering and Formal Methods, IEEE Computer Society, Los Alamitos (2003)Google Scholar
  11. 11.
    Fontaine, P., Marion, J-Y., Merz, S., Nieto, L., Tiu, A.: Expressiveness + automation + soundness: Towards combining SMT solvers and interactive proof assistants. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006 and ETAPS 2006. LNCS, vol. 3920, pp. 167–181. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Grégoire, B., Leroy, X.: A compiled implementation of strong reduction. In: Proc. of the 7th Int. Conf. on Functional Programming, pp. 235–246. ACM Press, New York (2002)Google Scholar
  13. 13.
    Grégoire, B., Mahboubi, A.: Proving equalities in a commutative ring done right in coq. In: Hurd, J., Melham, T. (eds.) TPHOLs 2005. LNCS, vol. 3603, pp. 98–113. Springer, Heidelberg (2005)Google Scholar
  14. 14.
    Grégoire, B., Théry, L., Werner, B.: A computational approach to pocklington certificates in type theory. In: Hagiya, M., Wadler, P. (eds.) FLOPS 2006. LNCS, vol. 3945, pp. 97–113. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    Harrison, J.: HOL light tutorial (for version 2.20)Google Scholar
  16. 16.
    Harrison, J., Théry, L.: A skeptic’s approach to combining HOL and Maple. Journal of Automated Reasoning 21, 279–294 (1998)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Karmarkar, N.: A new polynomial-time algorithm for linear programming. In: Proc. of the 16th ACM Symp. on Theory of Computing, pp. 302–311. ACM Press, New York (1984)Google Scholar
  18. 18.
    Necula, G.: Proof-carrying code. In: Proc. of the 24th ACM Symp. on Principles of Programming Languages, pp. 106–119. ACM Press, New York (1997)Google Scholar
  19. 19.
    Obua, S.: Proving bounds for real linear programs in isabelle/hol. In: Hurd, J., Melham, T. (eds.) TPHOLs 2005. LNCS, vol. 3603, pp. 227–244. Springer, Heidelberg (2005)Google Scholar
  20. 20.
    Parrilo, P.A.: Semidefinite programming relaxations for semialgebraic problems. Math. Program. 96(2), 293–320 (2003)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Pratt, V.: Two easy theories whose combination is hard. Technical report, Massachusetts Institute of Technology (1977)Google Scholar
  22. 22.
    Pugh, W.: The omega test: a fast and practical integer programming algorithm for dependence analysis. In: Proc. of the 1991 ACM/IEEE conference on Supercomputing, pp. 4–13. ACM Press, New York (1991)CrossRefGoogle Scholar
  23. 23.
    Schrijver, A.: Theory of Linear and Integer Programming. Wiley, Chichester (1998)MATHGoogle Scholar
  24. 24.
    Shostak, R.: Deciding linear inequalities by computing loop residues. J. ACM 28(4), 769–779 (1981)MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Stengle, G.: A nullstellensatz and a positivstellensatz in semialgebraic geometry. Mathematische Annalen 207(2), 87–97 (1973)MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Tarski, A.: A Decision Method for Elementary Algebra and Geometry, 2nd edn. University of California Press (1951)Google Scholar
  27. 27.
    Vandenberghe, L., Boyd, S.: Semidefinite programming. SIAM Rev. 38(1), 49–95 (1996)MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Weber, T.: Using a SAT solver as a fast decision procedure for propositional logic in an LCF-style theorem prover. In: Proc. of 18th Int. Conf. on the Theorem Proving in Higher Order Logics, pp. 180–189 (August 2005)Google Scholar
  29. 29.
    Zhang, L., Malik, S.: Validating sat solvers using an independent resolution-based checker: Practical implementations and other applications. In: Design, Automation and Test in Europe, pp. 10880–10885. IEEE Computer Society, Los Alamitos (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Frédéric Besson
    • 1
  1. 1.Irisa/Inria, Campus de Beaulieu, 35042 Rennes CedexFrance

Personalised recommendations