On Constructive Cut Admissibility in Deduction Modulo

  • Richard Bonichon
  • Olivier Hermant
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4502)

Abstract

Deduction Modulo is a theoretical framework that allows the introduction of computational steps in deductive systems. This approach is well suited to automated theorem proving. We describe a proof-search method based upon tableaux for Gentzen’s intuitionistic LJ extended with rewrite rules on propositions and terms . We prove its completeness with respect to Kripke structures. We then give a soundness proof with respect to cut-free LJ modulo. This yields a constructive proof of semantic cut elimination, which we use to characterize the relation between tableaux methods and cut elimination in the intuitionistic case.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bonichon, R.: TaMeD: A tableau method for deduction modulo. In: Basin, D., Rusinowitch, M. (eds.) IJCAR 2004. LNCS (LNAI), vol. 3097, pp. 445–459. Springer, Heidelberg (2004)Google Scholar
  2. 2.
    Coquand, C.: From semantic to rules: a machine assisted analysis. In: Meinke, K., Börger, E., Gurevich, Y. (eds.) CSL 1993. LNCS, vol. 832, pp. 91–105. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  3. 3.
    De Marco, M., Lipton, J.: Completeness and cut elimination in Church’s intuitionistic theory of types. Journal of Logic and Computation 15, 821–854 (2005)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Dowek, G., Hardin, T., Kirchner, C.: Theorem proving modulo. Journal of Automated Reasoning 31, 33–72 (2003)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Dowek, G., Werner, B.: Proof normalization modulo. The Journal of Symbolic Logic 68(4), 1289–1316 (2003)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Dragalin, A.G.: A completeness theorem for higher-order intuitionistic logic: an intuitionistic proof. In: Skordev, D.G. (ed.) Mathematical Logic and Its Applications, pp. 107–124. Plenum, New York (1987)Google Scholar
  7. 7.
    Dragalin, A.G.: Mathematical Intuitionism: Introduction to Proof Theory. Translation of Mathematical Monographs. American Mathematical Society vol. 67 (1988)Google Scholar
  8. 8.
    Dummett, M.: Elements of Intuitionism. Oxford University Press, Oxford (2000)MATHGoogle Scholar
  9. 9.
    Hermant, O.: Méthodes Sémantiques en Déduction Modulo. PhD thesis, Université Paris 7 - Denis Diderot (2005)Google Scholar
  10. 10.
    Hermant, O.: Semantic cut elimination in the intuitionistic sequent calculus. In: Urzyczyn, P. (ed.) TLCA 2005. LNCS, vol. 3461, pp. 221–233. Springer, Heidelberg (2005)Google Scholar
  11. 11.
    Krivine, J.-L.: Une preuve formelle et intuitionniste du théorème de complétude de la logique classique. The Bulletin of Symbolic Logic 2, 405–421 (1996)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Nerode, A., Shore, R.A.: Logic for Applications. Springer, Heidelberg (1993)MATHGoogle Scholar
  13. 13.
    Shankar, N.: Proof search in the intuitionistic sequent calculus. In: Kapur, D. (ed.) Automated Deduction - CADE-11. LNCS, vol. 607, pp. 522–536. Springer, Heidelberg (1992)Google Scholar
  14. 14.
    Smullyan, R.: First Order Logic. Springer, Heidelberg (1968)MATHGoogle Scholar
  15. 15.
    Takeuti, G.: Proof Theory. Studies in Logic and The Foundations of Mathematics, 2nd edn., vol. 81, North-Holland, Amsterdam (1987)Google Scholar
  16. 16.
    Troelstra, A.S., Van Dalen, D.: Constructivism in Mathematics. Studies in Logic and The Foundations of Mathematics, vol. 2. North Holland, Amsterdam (1988)Google Scholar
  17. 17.
    Veldman, W.: An intuitionistic completeness theorem for intuitionistic predicate logic. Journal of Symbolic Logic 41, 159–166 (1976)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Voronkov, A.: Proof-search in intuitionistic logic based on constraint satisfaction. In: Miglioli, P., Moscato, U., Ornaghi, M., Mundici, D. (eds.) TABLEAUX 1996. LNCS, vol. 1071, pp. 312–329. Springer, Heidelberg (1996)Google Scholar
  19. 19.
    Waaler, A.: Connection in Nonclassical Logics. In: Handbook of Automated Reasoning, vol. II, North Holland, Amsterdam (2001)Google Scholar
  20. 20.
    Waaler, A., Wallen, L.: Tableaux for Intutionistic Logics. In: Handbook of Tableau Methods, pp. 255–296. Kluwer Academic Publishers, Boston (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Richard Bonichon
    • 1
  • Olivier Hermant
    • 1
  1. 1.Université Paris 6 - LIP6 

Personalised recommendations