Zermelo’s Well-Ordering Theorem in Type Theory

  • Danko Ilik
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4502)

Abstract

Taking a ‘set’ to be a type together with an equivalence relation and adding an extensional choice axiom to the logical framework (a restricted version of constructive type theory) it is shown that any ‘set’ can be well-ordered. Zermelo’s first proof from 1904 is followed, with a simplification to avoid using comparability of well-orderings. The proof has been formalised in the system AgdaLight.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zermelo, E.: Beweis, daß jede menge wohlgeordnet werden kann. Mathematische Annalen 59, 514–516 (1904) English translation in van Heijenoort, 1967MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Feferman, S.: Some applications of the notions of forcing and generic sets. Fundamenta Mathematicae 56, 325–345 (1964)MathSciNetGoogle Scholar
  3. 3.
    Beeson, M.J.: Foundations of Constructive Mathematics: Metamathematical Studies. Springer, Heidelberg (1985)MATHGoogle Scholar
  4. 4.
    Diaconescu, R.: Axiom of choice and complementation. Proceedings of A.M.S. 51, 176–178 (1975)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Zermelo, E.: Neuer beweis für die möglichkeit einer wohlordnung. Mathematische Annalen 65, 107–128 (1908) English translation in van Heijenoort, 1967MATHCrossRefGoogle Scholar
  6. 6.
    Nordström, B., Petersson, K., Smith, J.M.: Martin-Löf’s Type Theory. In: Handbook on Logic in Computer Science, vol. 5, Oxford University Press, Oxford (2000)Google Scholar
  7. 7.
    Martin-Löf, P.: On the meanings of the logical constants and the justifications of the logical laws. Nordic Journal of Philosophical Logic 1, 11–60 (1996) Text of lectures originally given in 1983 and distributed in 1985MATHMathSciNetGoogle Scholar
  8. 8.
    Goodman, N.D., Myhill, J.: Choice implies excluded middle. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 24, 461 (1978)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Maietti, M.E., Valentini, S.: Can you add power-sets to martin-löf’s intuitionistic set theory? Mathematical Logic Quarterly 45, 521–532 (1999)MATHMathSciNetGoogle Scholar
  10. 10.
    Carlström, J.: EM + ext- + ACint is equivalent to ACext. Mathematical Logic Quarterly 50, 236–240 (2004)MATHCrossRefGoogle Scholar
  11. 11.
    Barthe, G., Capretta, V., Pons, O.: Setoids in type theory. Journal of Functional Programming 13, 261–293 (2003)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Kanamori, A.: Zermelo and set theory. The Bulletin of Symbolic Logic 10, 487–553 (2004)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Ilik, D.: Formalisation of zermelo’s well-ordering theorem in type theory (2006), http://www.mdstud.chalmers.se/~danko/
  14. 14.
    Norell, U.: Agdalight (2006), http://www.cs.chalmers.se/~ulfn/agdaLight/
  15. 15.
    Coquand, C.: Agda (2000), http://agda.sourceforge.net/
  16. 16.
    Lamport, L.: How to write a proof (1993)Google Scholar
  17. 17.
    Aczel, P.: The type theoretic interpretation of constructive set theory. In: Macintyre, A., Pacholski, L., Paris, J. (eds.) Logic Colloquium ’77, pp. 55–66. North-Holland Publishing Company, Amsterdam (1978)Google Scholar
  18. 18.
    Martin-Löf, P.: 100 years of zermelo’s axiom of choice: what was the problem with it? (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Danko Ilik
    • 1
  1. 1.DCS Master Programme, Chalmers University of Technology 

Personalised recommendations