(In)consistency of Extensions of Higher Order Logic and Type Theory

  • Herman Geuvers
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4502)


It is well-known, due to the work of Girard and Coquand, that adding polymorphic domains to higher order logic, HOL, or its type theoretic variant λHOL, renders the logic inconsistent. This is known as Girard’s paradox, see [4]. But there is also another presentation of higher order logic, in its type theoretic variant called λPREDω, to which polymorphic domains can be added safely, Both λHOL and λPREDω are well-known type systems and in this paper we study why λHOL with polymorphic domains is inconsistent and why nd λPREDω with polymorphic domains remains consistent. We do this by describing a simple model for the latter and we show why this can not be a model of the first.


Type Theory Natural Deduction High Order Logic Derivation Rule Lambda Calculus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barendregt, H.: Lambda calculi with types. In: Gabbai, D.M., Abramski, S., Maibaum, T.S.E. (eds.) Handbook of Logic in Computer Science, Oxford Univ. Press, Oxford (1992)Google Scholar
  2. 2.
    Berardi, S.: Type dependence and constructive mathematics. PhD thesis, Mathematical Institute, University of Torino, Italy (1990)Google Scholar
  3. 3.
    Church, A.: A formulation of the simple theory of types. JSL (1940)Google Scholar
  4. 4.
    Coquand, Th.: An analysis of Girard’s paradox. In: Logic in Computer Science, pp. 227–236. IEEE, Los Alamitos (1986)Google Scholar
  5. 5.
    Coquand, Th.: Metamathematical investigations of a Calculus of Constructions. In: Odifreddi, P. (ed.) Logic and computer science, pp. 91–122. Academic Press, London (1990)Google Scholar
  6. 6.
    Coquand, T., Huet, G.: The Calculus of Constructions. Information and Computation 76, 96–120 (1988)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Coquand, Th.: A new paradox in type theory. In: Prawitz, D., Skyrms, B., Westerståhl, D. (eds.) Proc. 9th Int. Congress of Logic, Methodology and Phil. of Science, Uppsala, Sweden, August 1991, vol. 134, pp. 555–570. North-Holland, Amsterdam (1994)CrossRefGoogle Scholar
  8. 8.
    Geuvers, H.: Logics and Type Systems. PhD thesis, University of Nijmegen, Netherlands (1993)Google Scholar
  9. 9.
    Geuvers, H.: A short and flexible proof of strong normalization for the Calculus of Constructions. In: Smith, J., Dybjer, P., Nordström, B. (eds.) TYPES 1994. LNCS, vol. 996, pp. 14–38. Springer, Heidelberg (1995)Google Scholar
  10. 10.
    Geuvers, H., Nederhof, M.-J.: A modular proof of strong normalization for the Calculus of Constructions. JoFP 1(2), 155–189 (1991)zbMATHMathSciNetGoogle Scholar
  11. 11.
    Girard, J.-Y.: Interprétation fonctionelle et élimination des coupures dans l’arithmétique d’ordre supérieur. PhD thesis, Université Paris VII (1972)Google Scholar
  12. 12.
    Howard, W.A.: The formulae-as-types notion of construction. In: Hindley, J.R., Seldin, J.P. (eds.) Essays on Combinatory Logic, Lambda Calculus and Formalism, pp. 479–490. Academic Press, London (1980)Google Scholar
  13. 13.
    Hurkens, T.: A simplification of Girard’s paradox. In: Dezani-Ciancaglini, M., Plotkin, G. (eds.) TLCA 1995. LNCS, vol. 902, pp. 266–278. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  14. 14.
    Urzyczyn, P., Sørensen, M.H.: Lectures on the Curry-Howard isomorphism. Studies in Logic and the Foundations of Mathematics, vol. 149. Elsevier, Amsterdam (2006)Google Scholar
  15. 15.
    Reynolds, J.: Polymorphism is not set-theoretic. In: Plotkin, G., MacQueen, D.B., Kahn, G. (eds.) Semantics of Data Types. LNCS, vol. 173, pp. 145–156. Springer, Heidelberg (1984)Google Scholar
  16. 16.
    Stefanova, M., Geuvers, H.: A simple model construction for the calculus of constructions. In: Berardi, S., Coppo, M. (eds.) TYPES 1995. LNCS, vol. 1158, pp. 249–264. Springer, Heidelberg (1996)Google Scholar
  17. 17.
    Tait, W.W.: Intensional interpretation of functionals of finite type I. JSL 32, 198–212 (1967)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Herman Geuvers
    • 1
  1. 1.Radboud University Nijmegen 

Personalised recommendations