Semisimple Algebras of Almost Minimal Rank over the Reals

  • Markus Bläser
  • Andreas Meyer de Voltaire
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4708)

Abstract

A famous lower bound for the bilinear complexity of the multiplication in associative algebras is the Alder–Strassen bound. Algebras for which this bound is tight are called algebras of minimal rank. After 25 years of research, these algebras are now well understood. We here start the investigation of the algebras for which the Alder–Strassen bound is off by one. As a first result, we completely characterize the semisimple algebras over ℝ whose bilinear complexity is by one larger than the Alder–Strassen bound.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alder, A., Strassen, V.: On the algorithmic complexity of associative algebras. Theoret. Comput. Sci. 15, 201–211 (1981)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bläser, M.: Lower bounds for the bilinear complexity of associative algebras. Comput. Complexity 9, 73–112 (2000)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Bläser, M.: On the complexity of the multiplication of matrices of small formats. J. Complexity 19, 43–60 (2003)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Bläser, M.: A complete characterization of the algebras of minimal bilinear complexity. SIAM J. Comput. 34(2), 277–298 (2004)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Büchi, W., Clausen, M.: On a class of primary algebras of minimal rank. Lin. Alg. Appl. 69, 249–268 (1985)MATHCrossRefGoogle Scholar
  6. 6.
    Bürgisser, P., Clausen, M., Shokrollahi, M.: Algebraic Complexity Theory. Springer, Heidelberg (1997)MATHGoogle Scholar
  7. 7.
    de Groote, H.F.: Characterization of division algebras of minimal rank and the structure of their algorithm varieties. SIAM J. Comput. 12, 101–117 (1983)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    de Groote, H.F., Heintz, J.: Commutative algebras of minimal rank. Lin. Alg. Appl. 55, 37–68 (1983)MATHCrossRefGoogle Scholar
  9. 9.
    Heintz, J., Morgenstern, J.: On associative algebras of minimal rank. In: Poli, A. (ed.) Applied Algebra, Algorithmics and Error-Correcting Codes. LNCS, vol. 228, pp. 1–24. Springer, Heidelberg (1986)Google Scholar
  10. 10.
    Strassen, V.: Algebraic complexity theory. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, vol. A, pp. 634–672. Elsevier Science Publishers B.V, Amsterdam (1990)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Markus Bläser
    • 1
  • Andreas Meyer de Voltaire
    • 2
  1. 1.Computer Science Department, Saarland University 
  2. 2.Chair of Information Technology and Education, ETH Zurich 

Personalised recommendations