Advertisement

Abstract

We say that, for k ≥ 2 and ℓ> k, a tree T is a (k,ℓ)-leaf root of a graph G = (V G ,E G ) if V G is the set of leaves of T, for all edges xy ∈ E G , the distance d T (x,y) in T is at most k and, for all non-edges \(xy \not\in E_G\), d T (x,y) is at least ℓ. A graph G is a (k,ℓ)-leaf power if it has a (k,ℓ)-leaf root. This new notion modifies the concept of k-leaf power which was introduced and studied by Nishimura, Ragde and Thilikos motivated by the search for underlying phylogenetic trees. Recently, a lot of work has been done on k-leaf powers and roots as well as on their variants phylogenetic roots and Steiner roots. For k = 3 and k = 4, structural characterisations and linear time recognition algorithms of k-leaf powers are known, and, recently, a polynomial time recognition of 5-leaf powers was given. For larger k, the recognition problem is open.

We give structural characterisations of (k,ℓ)-leaf powers, for some k and ℓ, which also imply an efficient recognition of these classes, and in this way we also improve and extend a recent paper by Kennedy, Lin and Yan on strictly chordal graphs and leaf powers.

Keywords

(k and ℓ) -leaf powers leaf powers leaf roots strictly chordal graphs linear time algorithms 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bibelnieks, E., Dearing, P.M.: Neighborhood subtree tolerance graphs. Discrete Applied Math. 98, 133–138 (2006)Google Scholar
  2. 2.
    Brandstädt, A., Le, V.B.: Structure and linear time recognition of 3-leaf powers. Information Processing Letters 98, 133–138 (2006)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Brandstädt, A., Le, V.B.: Dieter Rautenbach. Exact leaf powers, manuscript  (submitted, 2006)Google Scholar
  4. 4.
    Brandstädt, A., Le Dieter, V.B.: Rautenbach, Distance-hereditary 5-leaf powers, manuscript (submitted, 2006)Google Scholar
  5. 5.
    Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey. SIAM Monographs on Discrete Mathematics and Applications 3 (1999)Google Scholar
  6. 6.
    Brandstädt, A., Le, V.B., Sritharan, R.: Structure and linear time recognition of 4-leaf powers, manuscript (submitted, 2006)Google Scholar
  7. 7.
    Broin, M.W., Lowe, T.J.: A dynamic programming algorithm for covering problems with (greedy) totally balanced constraint matrices. SIAM J. Alg. Disc. Meth. 7, 348–357 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Buneman, P.: A note on the metric properties of trees. J. Combin. Th. 1(B), 48–50 (1974)Google Scholar
  9. 9.
    Chang, M.-S., Ko, T.: The 3-Steiner Root Problem. In: Proceedings WG 2007. LNCS, manuscript, as extended abstract (to appear, 2007)Google Scholar
  10. 10.
    Dahlhaus, E., Duchet, P.: On strongly chordal graphs. Ars Combinatoria 24 B, 23–30 (1987)MathSciNetGoogle Scholar
  11. 11.
    Dom, M., Guo, J., Hüffner, F., Niedermeier, R.: Error compensation in leaf root problems. In: Fleischer, R., Trippen, G. (eds.) ISAAC 2004. LNCS, vol. 3341, pp. 363–381. Springer, Heidelberg (2004), Algorithmica 44(4), 363–381(2006)Google Scholar
  12. 12.
    Dom, M., Guo, J., Hüffner, F., Niedermeier, R.: Extending the tractability border for closest leaf powers. In: Kratsch, D. (ed.) WG 2005. LNCS, vol. 3787, Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Howorka, E.: On metric properties of certain clique graphs. J. Combin. Th. 27(B), 67–74 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Kennedy, W.: Strictly chordal graphs and phylogenetic roots, Master Thesis, University of Alberta (2005)Google Scholar
  15. 15.
    Kennedy, W., Lin, G.: 5-th phylogenetic root construction for strictly chordal graphs, extended abstract. In: Deng, X., Du, D.-Z. (eds.) ISAAC 2005. LNCS, vol. 3827, pp. 738–747. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  16. 16.
    Kennedy, W., Lin, G., Yan, G.: Strictly chordal graphs are leaf powers. J. Discrete Algorithms 4, 511–525 (2006)zbMATHCrossRefGoogle Scholar
  17. 17.
    Lin, G.-H., Jiang, T., Kearney, P.E.: Phylogenetic k-root and Steiner k-root, Extended abstract. In: Lee, D.T., Teng, S.-H. (eds.) ISAAC 2000. LNCS, vol. 1969, pp. 539–551. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  18. 18.
    Lubiw, A.: Γ-free matrices, Master Thesis, Dept. of Combinatorics and Optimization, University of Waterloo, Canada (1982)Google Scholar
  19. 19.
    McKee, T.A., McMorris, F.R.: Topics in Intersection Graph Theory. SIAM Monographs on Discrete Mathematics and Applications 2 (1999)Google Scholar
  20. 20.
    Nishimura, N., Ragde, P., Thilikos, D.M.: On graph powers for leaf-labeled trees. J. Algorithms 42, 69–108 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Rautenbach, D.: Some remarks about leaf roots. Discrete Math. 306(13), 1456–1461 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Raychaudhuri, A.: On powers of strongly chordal and circular arc graphs. Ars Combinatoria 34, 147–160 (1992)zbMATHMathSciNetGoogle Scholar
  23. 23.
    Spinrad, J.P.: Efficient Graph Representations, Fields Institute Monographs, American Mathematical Society, Providence, Rhode Island (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Andreas Brandstädt
    • 1
  • Peter Wagner
    • 1
  1. 1.Institut für Informatik, Universität Rostock, D-18051 RostockGermany

Personalised recommendations