Height-Deterministic Pushdown Automata

  • Dirk Nowotka
  • Jiří Srba
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4708)

Abstract

We define the notion of height-deterministic pushdown automata, a model where for any given input string the stack heights during any (nondeterministic) computation on the input are a priori fixed. Different subclasses of height-deterministic pushdown automata, strictly containing the class of regular languages and still closed under boolean language operations, are considered. Several such language classes have been described in the literature. Here, we suggest a natural and intuitive model that subsumes all the formalisms proposed so far by employing height-deterministic pushdown automata. Decidability and complexity questions are also considered.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alur, R., Etessami, K., Madhusudan, P.: A temporal logic of nested calls and returns. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 467–481. Springer, Heidelberg (2004)Google Scholar
  2. 2.
    Alur, R., Kumar, V., Madhusudan, P., Viswanathan, M.: Congruences for visibly pushdown languages. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1102–1114. Springer, Heidelberg (2005)Google Scholar
  3. 3.
    Alur, R., Madhusudan, P.: Visibly pushdown languages. In: ACM Symposium on Theory of Computing (STOC 2004), pp. 202–211. ACM Press, New York (2004)CrossRefGoogle Scholar
  4. 4.
    Bárány, V., Löding, C., Serre, O.: Regularity problems for visibly pushdown languages. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 420–431. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Caucal, D.: Synchronization of pushdown automata. In: Ibarra, O.H., Dang, Z. (eds.) DLT 2006. LNCS, vol. 4036, pp. 120–132. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Esparza, J., Hansel, D., Rossmanith, P., Schwoon, S.: Efficient algorithms for model checking pushdown systems. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 232–247. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  7. 7.
    Fisman, D., Pnueli, A.: Beyond regular model checking. In: Hariharan, R., Mukund, M., Vinay, V. (eds.) FST TCS 2001: Foundations of Software Technology and Theoretical Computer Science. LNCS, vol. 2245, pp. 156–170. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Löding, Ch., Madhusudan, P., Serre, O.: Visibly pushdown games. In: Lodaya, K., Mahajan, M. (eds.) FSTTCS 2004. LNCS, vol. 3328, pp. 408–420. Springer, Heidelberg (2004)Google Scholar
  9. 9.
    Murawski, A., Walukiewicz, I.: Third-order idealized algol with iteration is decidable. In: Sassone, V. (ed.) FOSSACS 2005. LNCS, vol. 3441, pp. 202–218. Springer, Heidelberg (2005)Google Scholar
  10. 10.
    Pitcher, C.: Visibly pushdown expression effects for XML stream processing. In: Proceedings of Programming Language Technologies for XML (PLAN-X), pp. 5–19 (2005)Google Scholar
  11. 11.
    Srba, J.: Visibly pushdown automata: From language equivalence to simulation and bisimulation. In: Ésik, Z. (ed.) CSL 2006. LNCS, vol. 4207, pp. 89–103. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Dirk Nowotka
    • 1
  • Jiří Srba
    • 2
  1. 1.Institut für Formale Methoden der Informatik, Universität StuttgartGermany
  2. 2.BRICS,Department of Computer Science, Aalborg UniversityDenmark

Personalised recommendations