Probabilistic Beam Search for the Longest Common Subsequence Problem

  • Christian Blum
  • Maria J. Blesa
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4638)

Abstract

Finding the common part of a set of strings has many important applications, for example, in pattern recognition or computational biology. In computer science, this problem is known as the longest common subsequence problem. In this work we present a probabilistic beam search approach to solve this classical problem. To our knowledge, this algorithm is the first stochastic local search algorithm proposed for this problem. The results show the great potential of our algorithm when compared to existing heuristic methods.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Maier, D.: The complexity of some problems on subsequences and supersequences. Journal of the ACM 25, 322–336 (1978)MATHCrossRefGoogle Scholar
  2. 2.
    Gusfield, D.: Algorithms on Strings, Trees, and Sequences. Computer Science and Computational Biology. Cambridge University Press, Cambridge (1997)MATHGoogle Scholar
  3. 3.
    Aho, A., Hopcroft, J., Ullman, J.: Data structures and algorithms. Addison-Wesley, Reading (1983)MATHGoogle Scholar
  4. 4.
    Smith, T., Waterman, M.: Identification of common molecular subsequences. Journal of Molecular Biology 147(1), 195–197 (1981)CrossRefGoogle Scholar
  5. 5.
    Bergeroth, L., Hakonen, H., Raita, T.: A survey of longest common subsequence algorithms. In: Proceedings of SPIRE 2000 – 7th International Symposium on String Processing and Information Retrieval, pp. 39–48. IEEE press, Los Alamitos (2000)CrossRefGoogle Scholar
  6. 6.
    Bonizzoni, P., Della Vedova, G., Mauri, G.: Experimenting an approximation algorithm for the LCS. Discrete Applied Mathematics 110, 13–24 (2001)CrossRefGoogle Scholar
  7. 7.
    Blum, C., Cotta, C., Fernández, A.J., Gallardo, J.E.: A probabilistic beam search algorithm for the shortest common supersequence problem. In: C.C., et al. (eds.) Proceedings of EvoCOP 2007 – Seventh European Conference on Evolutionary Computation in Combinatorial Optimisation. LNCS, vol. 4446, Springer, Heidelberg (In press, 2007)Google Scholar
  8. 8.
    Fraser, C.B.: Subsequences and supersequences of strings. PhD thesis, University of Glasgow (1995)Google Scholar
  9. 9.
    Huang, K., Yang, C., Tseng, K.: Fast algorithms for finding the common subsequences of multiple sequences. In: Proceedings of the International Computer Symposium, pp. 1006–1011. IEEE press, Los Alamitos (2004)Google Scholar
  10. 10.
    Ow, P.S., Morton, T.E.: Filtered beam search in scheduling. International Journal of Production Research 26, 297–307 (1988)CrossRefGoogle Scholar
  11. 11.
    Blum, C.: Beam-ACO—Hybridizing ant colony optimization with beam search: An application to open shop scheduling. Computers & Operations Research 32(6), 1565–1591 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Christian Blum
    • 1
  • Maria J. Blesa
    • 1
  1. 1.ALBCOM, Dept. Llenguatges i Sistemes Informàtics, Universitat Politècnica de Catalunya, BarcelonaSpain

Personalised recommendations