Advertisement

A Statistical Model of Logic Gates for Monte Carlo Simulation Including On-Chip Variations

  • Francesco Centurelli
  • Luca Giancane
  • Mauro Olivieri
  • Giuseppe Scotti
  • Alessandro Trifiletti
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4644)

Abstract

Process variations are becoming a paramount design problem in nano-scale VLSI. We present a framework for the statistical model of logic gates that describes both inter-die and intra-die variations of performance parameters such as propagation delay and leakage currents. This allows fast but accurate behavioral-level Monte-Carlo simulations, that could be useful for full-custom digital design optimization and yield prediction, and enables the development of a yield-aware digital design flow. The model can incorporate correlation between mismatch parameters and dependence on distance and position, and can be extracted by fitting of Monte-Carlo transistor level simulations. An example implementation using Verilog-A hardware description language in Cadence environment is presented.

Keywords

Leakage Current Logic Gate Stochastic Variable Yield Prediction NAND Gate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chandrakasan, A., Bowhill, W.J., Fox, F.: Design of high-performance microprocessor circuits. Wiley, New York (2001)Google Scholar
  2. 2.
    Gneiting, T., Jalowiecki, I.P.: Influence of process parameter variations on the signal distribution behavior of wafer scale integration devices. IEEE Trans. Components, Packaging and Manufacturing Technology Part B 18(3), 424–430 (1995)CrossRefGoogle Scholar
  3. 3.
    Chang, H., Qian, H., Sapatnekar, S.S.: The certainty of uncertainty: randomness in nanometer design. In: Macii, E., Paliouras, V., Koufopavlou, O. (eds.) PATMOS 2004. LNCS, vol. 3254, pp. 36–47. Springer, Heidelberg (2004)Google Scholar
  4. 4.
    Nassif, S.: Design for variability in DSM technologies. In: IEEE Int. Symp. Quality Electronic design, pp. 451–454. IEEE Computer Society Press, Los Alamitos (2000)Google Scholar
  5. 5.
    Nardi, A., Neviani, A., Zanoni, E., Quarantelli, M., Guardiani, C.: Impact of unrealistic worst case modeling on the performance of VLSI circuits in deep submicron CMOS technologies. IEEE Trans. Semiconductor Manufacturing 12(4), 396–402 (1999)CrossRefGoogle Scholar
  6. 6.
    Singhal, K., Visvanathan, V.: Statistical device models from worst case files and electrical test data. IEEE Trans. Semiconductor Manufacturing 12(4), 470–484 (1999)CrossRefGoogle Scholar
  7. 7.
    Mutlu, A.A., Kwong, C., Mukherjee, A., Rahman, M.: Statistical circuit performance variability minimization under manufacturing variations. In: ISCAS 06 IEEE Int. Symp. on Circuits and Systems, pp. 3025–3028. IEEE Computer Society Press, Los Alamitos (2006)CrossRefGoogle Scholar
  8. 8.
    Jyu, H.-F., Malik, S., Devadas, S., Keutzer, K.W.: Statistical timing analysis of combinatorial logic circuits. IEEE Trans. VLSI Systems 1(2), 126–137 (1993)CrossRefGoogle Scholar
  9. 9.
    Chang, H., Sapatnekar, S.S.: Statistical timing analysis under spatial correlations. IEEE Trans. on CAD 24(9), 1467–1482 (2005)Google Scholar
  10. 10.
    Jess, J.A.G., Kalafala, K., Naidu, S.R., Otten, R.H.J.M., Visweswariah, C.: Statistical timing for parametric yield prediction of digital integrated circuits. IEEE Trans. on CAD 25(11), 2376–2392 (2006)Google Scholar
  11. 11.
    Agarwal, A., Mukhopadhyay, S., Raychowdhury, A., Roy, K., Kim, C.H.: Leakage power analysis and reduction for nanoscale circuits. IEEE Micro 26(2), 68–80 (2006)CrossRefGoogle Scholar
  12. 12.
    Rao, R., Srivastava, A., Blaauw, D., Sylvester, D.: Statistical estimation of leakage current considering inter- and intra-die process variation. In: ISLPED 2003 Int. Symp. Low-Power Electronics and Design, pp. 84–89 (2003)Google Scholar
  13. 13.
    Chang, H., Sapatnekar, S.S.: Full-chip analysis of leakage power under process variations, including spatial correlations. In: DAC 2005 Proc. Design Automation Conf., pp. 523–528 (2005)Google Scholar
  14. 14.
    Chen, T., Naffziger, S.: Comparison of Adaptive Body Bias (ABB) and Adaptive Supply Voltage (ASV) for improving delay and leakage under the presence of process variation. IEEE Trans. VLSI Systems 11(5), 888–899 (2005)CrossRefGoogle Scholar
  15. 15.
    ITRS: The International Technology Roadmap for Semiconductors, 2005 edn. (2005) Google Scholar
  16. 16.
    Verilog-A language reference manual, Version 1.0. Open Verilog International (1996)Google Scholar
  17. 17.
    Ashenden, P.J., Peterson, G.D., Teegarden, D.A.: The system designer’s guide to VHDL-AMS. Morgan Kaufmann, San Francisco (2002)Google Scholar
  18. 18.
    Auvergne, A., Daga, J.M., Rezzoug, M.: Signal transition time effect on CMOS delay evaluation. IEEE Trans. Circuits and Systems I 47(9), 1362–1369 (2000)CrossRefGoogle Scholar
  19. 19.
    Bowman, K.A., Duvall, S.G., Meindl, J.D.: Impact of die-to-die and within-die parameter fluctuations on the maximum clock frequency distribution for gigascale integration. IEEE J. Solid-State Circuits 37(2), 183–190 (2002)CrossRefGoogle Scholar
  20. 20.
    Bowman, K.A., Austin, B.L., Eble, J.C., Tang, X., Meindl, J.D.: A physical alpha-power law MOSFET model. J. Solid-State Circuits 34(10), 1410–1414 (1999)CrossRefGoogle Scholar
  21. 21.
    Gu, R.X., Elmasry, M.I.: Power dissipation analysis and optimization of deep submicron CMOS digital circuits. IEEE J. Solid-State Circuits 31(5), 707–713 (1996)CrossRefGoogle Scholar
  22. 22.
    Rao, R., Devgan, A., Blaauw, D., Sylvester, D.: Parametric yield estimation considering leakage variability. In: DAC 2004 Proc. Design Automation Conf., pp. 442–447 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Francesco Centurelli
    • 1
  • Luca Giancane
    • 1
  • Mauro Olivieri
    • 1
  • Giuseppe Scotti
    • 1
  • Alessandro Trifiletti
    • 1
  1. 1.Dipartimento di Ingegneria Elettronica, Università di Roma "La Sapienza", Via Eudossiana 18, 00184 RomaItaly

Personalised recommendations