Enabling the Simulation of Service-Oriented Computing and Provisioning Policies for Autonomic Utility Grids

  • Marcos Dias de Assunção
  • Werner Streitberger
  • Torsten Eymann
  • Rajkumar Buyya
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4685)


There are key challenges in utility computing environments such as the provisioning, orchestration and allocation of resources to services. In these environments, providers need to decide how resources are allocated to service applications according to their workloads in order to guarantee the Quality of Service (QoS) required by customers. Autonomic computing inspired mechanisms are appealing to enable self-organising resource allocation and provisioning. However, these mechanisms are difficult to evaluate in practice either because of the lack of a real test bed or the difficulty in replicating experimental results. This work thus describes a service framework for a Grid simulator. This framework allows the modelling and evaluation of the provisioning and negotiation of services and resources. We also discuss experimental results that demonstrate the usefulness of this framework for the simulation of a decentralised and self-organising economic model for service and resource negotiation termed Catallaxy.


Resource provisioning Grid computing utility computing simulation framework 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Foster, I.: Service-oriented science. Science 308(5723), 814–817 (2005)CrossRefGoogle Scholar
  2. 2.
    Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36(1), 41–50 (2003)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Almeida, J., Almeida, V., Ardagna, D., Francalanci, C., Trubian, M.: Resource management in the autonomic service-oriented architecture. In: ICAC 2006. 3rd IEEE International Conference on Autonomic Computing, Dublin, Ireland, pp. 84–92 (2006)Google Scholar
  4. 4.
    Bennani, M.N., Menascé, D.A.: Resource allocation for autonomic data centers using analytic performance models. In: ICAC 2005. 2nd IEEE International Conference on Autonomic Computing, Seattle, Washington, pp. 229–240 (2005)Google Scholar
  5. 5.
    Walsh, W.E., Tesauro, G., Kephart, J.O., Das, R.: Utility functions in autonomic systems. In: ICAC 2004. International Conference on Autonomic Computing, New York, pp. 70–77 (2004)Google Scholar
  6. 6.
    Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, R., Pratt, I., Warfield, A.: Xen and the art of virtualization. In: SOSP 2003. 19th ACM Symposium on Operating Systems Principles, pp. 164–177. ACM Press, New York (2003)CrossRefGoogle Scholar
  7. 7.
    Low, C., Byde, A.: Market-based approaches to utility computing. Technical Report HPL-2006-23, Internet Systems and Storage Laboratory, Hewlett Packard Laboratories Bristol (2006)Google Scholar
  8. 8.
    Bell, W.H., Cameron, D.G., Capozza, L., Millar, A.P., Stockinger, K., Zini, F.: Simulation of dynamic grid replication strategies in optorsim. In: Parashar, M. (ed.) GRID 2002. LNCS, vol. 2536, pp. 46–57. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    Casanova, H.: Simgrid: A toolkit for the simulation of application scheduling. In: CCGrid 2001. 1st IEEE/ACM International Symposium on Cluster Computing and the Grid, Brisbane, Australia, pp. 430–437 (2001)Google Scholar
  10. 10.
    Song, H., Liu, X., Jakobsen, D., Bhagwan, R., Zhang, X., Taura, K., Chien, A.: The microgrid: a scientific tool for modeling computational grids. In: Reich, S., Anderson, K.M. (eds.) Open Hypermedia Systems and Structural Computing. LNCS, vol. 1903, p. 53. Springer, Heidelberg (2000)Google Scholar
  11. 11.
    Buyya, R., Murshed, M.: Gridsim: A toolkit for the modeling and simulation of distributed resource management and scheduling for grid computing. Concurrency and Computation: Practice and Experience (CPE) 14(13-15), 1175–1220 (2002)zbMATHCrossRefGoogle Scholar
  12. 12.
    Grit, L., Inwin, D., Yumerefendi, A., Chase, J.: Virtual machine hosting for networked clusters: Building the foundations for ’autonomic’ orchestration. In: VTDC 2006. 1st International Workshop on Virtualization Technology in Distributed Computing, Tampa, Florida (2006)Google Scholar
  13. 13.
    Urgaonkar, B., Roscoe, P.S.T.: Resource overbooking and application profiling in shared hosting platforms. In: 5th Symposium on Operating Systems Design and Implementation, Boston, Massachusetts, pp. 239–254 (2002)Google Scholar
  14. 14.
    Hayek, F.A.V.: The Collected Works of F.A. Hayek. University of Chicago Press, Chicago (1989)Google Scholar
  15. 15.
    Eymann, T., Ardaiz, O., Catalano, M., Chacin, P., Chao, I., Freitag, F., Gallegati, M., Giulioni, G., Joita, L., Navarro, L., Neumann, D.G., Rana, O., Reinicke, M., Schiaffino, R.C., Schnizler, B., Streitberger, W., Veit, D., Zini, F.: Catallaxy-based grid markets. International Journal on Multiagent and Grid Systems, Special Issue on Smart Grid Technologies & Market Models 1(4), 297–307 (2005)zbMATHGoogle Scholar
  16. 16.
    Reinicke, M., Streitberger, W., Eymann, T.: Scalability analysis of matchmakers in self-optimizing computing networks. Journal of Autonomic and Trusted Computing (JoATC) (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Marcos Dias de Assunção
    • 1
    • 2
  • Werner Streitberger
    • 3
  • Torsten Eymann
    • 3
  • Rajkumar Buyya
    • 1
  1. 1.Grid Computing and Distributed Systems (GRIDS) Laboratory 
  2. 2.NICTA Victoria Research Laboratory, The University of MelbourneAustralia
  3. 3.Chair for Information Systems Management, University of BayreuthGermany

Personalised recommendations