Disorders of the Acid-Base Status

  • E. Al-Khadra

Core Messages

  • Essentially all pediatric disorders, if severe enough, can lead to acid-base disturbances directly, as a result of therapy, or both.

  • Acid-base disorders need to be anticipated in all critically ill patients. Proactive monitoring of the acid-base status will allow the early recognition of derangements and the prevention of what could become a life-threatening state.

  • Acidosis is the most common acid-base derangement in the intensive care unit (ICU), with metabolic acidosis potentially indicating a more severe course and worse outcome.

  • A pH of <7.2 merely indicates a primary acidosis- inducing disorder. Further assessment of the type of acidosis and the presence of a mixed acid-base disorder requires measurement of pCO2, serum bicarbonate, albumin, and calculation of the anion gap.

  • The most commonly encountered causes of metabolic acidoses in the ICU are renal insufficiency, sepsis, and DKA, while acute respiratory distress syndrome (ARDS) and severe status asthmaticus are the usual suspects in respiratory acidoses.

  • Alkalosis, on the other hand, is less common in the ICU. Fluid status derangements and, especially, gastric fluid depletion are the usual underlying causes of metabolic alkaloses, whereas rapid respiration secondary to lung diseases, excessive mechanical ventilation, pain, or central nervous system processes are the common causes of respiratory alkaloses.

  • In the ICU, identification of acid-base derangements is followed by timely stabilization of the patient irrespective of the underlying cause. Depending on the severity of the derangement and the patient’s response to the stabilizing interventions, the underlying cause might also need to be aggressively sought and emergently reversed.

  • Identification of the underlying cause(s) of the acid-base disorder at hand may be the final step in the management of these patients, but plays an important role both in the prevention of worsening of the derangement and other complications as well as in the determination of the patient’s overall prognosis.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adrogue HJ, Madias NE (1981) Changes in plasma potassium concentration during acute acid-base disturbances. Am J Med 71(3):456–67PubMedCrossRefGoogle Scholar
  2. 2.
    Adrogue HJ, Madias NE (1985) Influence of chronic respiratory acid-base disorders on acute CO2 titration curve. J Appl Physiol 58(4):1231–8PubMedGoogle Scholar
  3. 3.
    Adrogue HJ, Tobin MJ (1997) Respiratory failure. Blackwell's basics of medicine. Cambridge, MA: Blackwell Science, xii, 560 pGoogle Scholar
  4. 4.
    Adrogue HJ, Madias NE (1998) Management of life-threatening acid-base disorders. First of two parts. N Engl J Med 338(1):26–34PubMedCrossRefGoogle Scholar
  5. 5.
    Adrogue HJ, Madias NE (1998) Management of life-threatening acid-base disorders. Second of two parts. N Engl J Med 338(2):107–11PubMedCrossRefGoogle Scholar
  6. 6.
    Adrogue HJ, Brensilver J, Madias NE (1978) Changes in the plasma anion gap during chronic metabolic acid-base disturbances. Am J Physiol 235(4):F291–F297PubMedGoogle Scholar
  7. 7.
    Adrogue HJ, Lederer E, Suki W, et al. (1986) Determinants of plasma potassium levels in diabetic ketoacidosis. Medicine 65(3):163–72PubMedGoogle Scholar
  8. 8.
    Adrogue HJ, Chap Z, Okuda Y, et al. (1988) Acidosis-induced glucose intolerance is not prevented by adrenergic blockade. Am J Physiol 255(6, Part 1):E812–E823PubMedGoogle Scholar
  9. 9.
    Arbus GS, Hebert LA, Levesque PR, et al. (1969) Potassium depletion and hypercapnia. N Engl J Med 280(12):670PubMedCrossRefGoogle Scholar
  10. 10.
    Arieff AI, DeFronzo RA (1985) Fluid, electrolyte, and acid-base disorders. New York: Churchill Livingstone, 2 vols. (xxi 1246, 44 p)Google Scholar
  11. 11.
    Bageant R (1975) Variations in arterial blood gas measurements due to sampling techniques. Respiratory Care 20:565Google Scholar
  12. 12.
    Balasubramanyan N, Havens PL, Hoffman GM (1999) Unmeasured anions identified by the Fencl-Stewart method predict mortality better than base excess, anion gap, and lactate in patients in the pediatric intensive care unit. Crit Care Med 27(8):1577–81PubMedCrossRefGoogle Scholar
  13. 13.
    Batlle DC, Downer M, Gutterman C, et al. (1985) Relationship of urinary and blood carbon dioxide tension during hypercapnia in the rat. Its significance in the evaluation of collecting duct hydrogen ion secretion. J Clin Invest 75(5):1517–30PubMedCrossRefGoogle Scholar
  14. 14.
    Bushinsky DA, Coe FL, Katzenberg C, et al. (1982) Arterial pCO2 in chronic metabolic acidosis. Kidney Int 22(3):311–14PubMedCrossRefGoogle Scholar
  15. 15.
    Carlisle EJ, Donnelly SM, Vasuvattakul S, et al. (1991) Glue-sniffing and distal renal tubular acidosis: sticking to the facts. J Am Soc Nephrol 1(8):1019–27PubMedGoogle Scholar
  16. 16.
    Chatton J Y, Bessighir K, Roch-Ramel F (1990) Salicylic acid permeability properties of the rabbit cortical collecting duct. Am J Physiol 259(4, Part 2):F613–F618PubMedGoogle Scholar
  17. 17.
    Cohen JJ, Kassirer JP (1982) Acid-base, 1st ed. Boston: Little, Brown, xxii, 510 pGoogle Scholar
  18. 18.
    Cooper DJ, Walley KR, Wiggs BR, et al. (1990) Bicarbonate does not improve hemodynamics in critically ill patients who have lactic acidosis. A prospective, controlled clinical study. Ann Intern Med 112(7):492–8PubMedGoogle Scholar
  19. 19.
    Cusi K, Consoli A (1994) Alcoholic ketoacidosis and lactic acidosis. Diabetes Rev 2:195–208.Google Scholar
  20. 20.
    Da Silva Junior JC, Perrone RD, Johns CA, et al. (1991) Rat kidney band 3 mRNA modulation in chronic respiratory acidosis. Am J Physiol 260(2, Part 2):F204–F209PubMedGoogle Scholar
  21. 21.
    DuBose TD, Jr (1983) Clinical approach to patients with acid-base disorders. Med Clin North Am 67(4): 799–813PubMedGoogle Scholar
  22. 22.
    Durward A, Mayer A, Skellett S, et al. (2003) Hypo-albuminaemia in critically ill children: incidence, prognosis, and influence on the anion gap. Arch Dis Child 88(5):419–22PubMedCrossRefGoogle Scholar
  23. 23.
    England BK, Chastain JL, Mitch WE (1991) Abnormalities in protein synthesis and degradation induced by extracellular pH in BC3H1 myocytes. Am J Physiol 260(2, Part 1): C277–C282PubMedGoogle Scholar
  24. 24.
    Evers W, Racz GB, Levy, AA (1972) A comparative study of plastic (polypropylene) and glass syringes in blood-gas analysis. Anesth Analg 51(1):92–7PubMedCrossRefGoogle Scholar
  25. 25.
    Feihl F, Perret C (1994) Permissive hypercapnia. How permissive should we be? Am J Respir Crit Care Med 150(6, Part 1):1722–37PubMedGoogle Scholar
  26. 26.
    Figge J, Rossing TH, Fencl V (1991) The role of serum proteins in acid-base equilibria. J Lab Clin Med 117(6):453–67PubMedGoogle Scholar
  27. 27.
    Fulop M, Hoberman HD (1975) Alcoholic ketosis. Diabetes 24(9):785–90PubMedCrossRefGoogle Scholar
  28. 28.
    Gabow PA, Anderson RJ, Potts DE, et al. (1978) Acid-base disturbances in the salicylate-intoxicated adult. Arch Intern Med 138(10):1481–4PubMedCrossRefGoogle Scholar
  29. 29.
    Ganapathy V, Leibach FH (1991) Protons and regulation of biological functions. Kidney Int Suppl 33:S4–S10PubMedGoogle Scholar
  30. 30.
    Garella S (1988) Extracorporeal techniques in the treatment of exogenous intoxications. Kidney Int 33(3):735–54PubMedCrossRefGoogle Scholar
  31. 31.
    Gennari FJ, Goldstein MB, Schwartz WB (1972) The nature of the renal adaptation to chronic hypocapnia. J Clin Invest 51(7):1722–30PubMedCrossRefGoogle Scholar
  32. 32.
    Glaser N, Barnett P, McCaslin I, et al. (2001) Risk factors for cerebral edema in children with diabetic ketoacidosis. The Pediatric Emergency Medicine Collaborative Research Committee of the American Academy of Pediatrics. N Engl J Med 344(4):264–9PubMedCrossRefGoogle Scholar
  33. 33.
    Hansen JE, Simmons DH (1977) A systematic error in the determination of blood pCO2. Am Rev Respir Dis 115(6):1061–3PubMedGoogle Scholar
  34. 34.
    Harsten A, Berg B, Inerot S, et al. (1988) Importance of correct handling of samples for the results of blood gas analysis. Acta Anaesthesiol Scand 32(5):365–8PubMedCrossRefGoogle Scholar
  35. 35.
    Hill JB (1973) Salicylate intoxication. N Engl J Med 288(21):1110–13PubMedGoogle Scholar
  36. 36.
    Hindman BJ (1990) Sodium bicarbonate in the treatment of subtypes of acute lactic acidosis: physiologic considerations. Anesthesiology 72(6):1064–76PubMedGoogle Scholar
  37. 37.
    Hood VL, Tannen RL (1998) Protection of acid-base balance by pH regulation of acid production. N Engl J Med 339(12):819–26PubMedCrossRefGoogle Scholar
  38. 38.
    Hood VL, Tannen RL (1994) Maintenance of acid base homeostasis during ketoacidosis and lactic acidosis: implications for therapy. Diabetes Rev 2:177–94Google Scholar
  39. 39.
    Javaheri S, Kazemi H (1987) Metabolic alkalosis and hypoventilation in humans. Am Rev Respir Dis 136(4): 1011–16PubMedGoogle Scholar
  40. 40.
    Javaheri S, Shore NS, Rose B, et al. (1982) Compensatory hypoventilation in metabolic alkalosis. Chest 81(3):296–301PubMedCrossRefGoogle Scholar
  41. 41.
    Kamel K, Gowrishankar M, Cheema-Dhadli S, et al. (1996) How is acid-base balance maintained in patients with renal tubular acidosis. J Am Soc Nephrol 7:1350Google Scholar
  42. 42.
    Kerber RE, Pandian NG, Hoyt R, et al. (1983) Effect of ischemia, hypertrophy, hypoxia, acidosis, and alkalosis on canine defibrillation. Am J Physiol 244(6): H825–H831PubMedGoogle Scholar
  43. 43.
    Kokko J P, Tannen RL (1996) Fluids and electrolytes, 3rd ed. Philadelphia: Saunders, xii, 899 pGoogle Scholar
  44. 44.
    Kowalchuk JM, Heigenhauser GJ, Jones NL (1984) Effect of pH on metabolic and cardiorespiratory responses during progressive exercise. J Appl Physiol 57(5):1558–63PubMedGoogle Scholar
  45. 45.
    Krapf R, Beeler I, Hertner D, et al. (1991) Chronic respiratory alkalosis. The effect of sustained hyperventilation on renal regulation of acid-base equilibrium. N Engl J Med 324(20):1394–401PubMedCrossRefGoogle Scholar
  46. 46.
    Landry DW, Oliver JA (1992) The ATP-sensitive K+ channel mediates hypotension in endotoxemia and hypoxic lactic acidosis in dog. J Clin Invest 89(6):2071–4PubMedCrossRefGoogle Scholar
  47. 47.
    Lebovitz HE (1995) Diabetic ketoacidosis. Lancet 345(8952):767–72PubMedCrossRefGoogle Scholar
  48. 48.
    Lennon EJ, Lemann J, Jr, Litzow JR (1966) The effects of diet and stool composition on the net external acid balance of normal subjects. J Clin Invest 45(10):1601–7PubMedCrossRefGoogle Scholar
  49. 49.
    Madias NE (1986) Lactic acidosis. Kidney Int 29(3):752–74PubMedCrossRefGoogle Scholar
  50. 50.
    Madias NE, Adrogue HJ (1983) Influence of chronic metabolic acid-base disorders on the acute CO2 titration curve. J Appl Physiol 55(4):1187–95PubMedGoogle Scholar
  51. 51.
    Madias NE, Wolf CJ, Cohen JJ (1985) Regulation of acid-base equilibrium in chronic hypercapnia. Kidney Int 27(3):538–43PubMedCrossRefGoogle Scholar
  52. 52.
    Madias NE, Goorno WE, Herson S (1987) Severe lactic acidosis as a presenting feature of pheochromocytoma. Am J Kidney Dis 10(3):250–3PubMedGoogle Scholar
  53. 53.
    Massry SG, Glassock RJ (2001) Massry & Glassock's textbook of nephrology, 4th ed. Philadelphia: Lippincott Williams & Wilkins, xl, 2072 pGoogle Scholar
  54. 54.
    Maxwell MH, Kleeman CR, Narins RG (1987) Clinical disorders of fluid and electrolyte metabolism, 4th ed. New York: McGraw-Hill, xiii, 1268 pGoogle Scholar
  55. 55.
    Mitch WE, Medina R, Grieber S, et al. (1994) Metabolic acidosis stimulates muscle protein degradation by activating the adenosine triphosphate-dependent pathway involving ubiquitin and proteasomes. J Clin Invest 93(5):2127–33PubMedCrossRefGoogle Scholar
  56. 56.
    Morris LR, Murphy MB, Kitabchi AE (1986) Bicarbonate therapy in severe diabetic ketoacidosis. Ann Intern Med 105(6):836–40PubMedGoogle Scholar
  57. 57.
    Mueller RG, Lang GE, Beam JM (1976) Bubbles in samples for blood gas determinations. A potential source of error. Am J Clin Pathol 65(2):242–9PubMedGoogle Scholar
  58. 58.
    Okuda Y, Adrogue HJ, Field JB, et al. (1996) Counterproductive effects of sodium bicarbonate in diabetic ketoacidosis. J Clin Endocrinol Metab 81(1):314–20PubMedCrossRefGoogle Scholar
  59. 59.
    Orchard CH, Kentish JC (1990) Effects of changes of pH on the contractile function of cardiac muscle. Am J Physiol 258(6, Part 1):C967–C981PubMedGoogle Scholar
  60. 60.
    Orchard CH, Cingolani HE (1994) Acidosis and arrhythmias in cardiac muscle. Cardiovasc Res 28(9):1312–19PubMedCrossRefGoogle Scholar
  61. 61.
    Pierce N F, Fedson DS, Brigham KL, et al. (1970) The ventilatory response to acute base deficit in humans. Time course during development and correction of metabolic acidosis. Ann Intern Med 72(5): 633–40PubMedGoogle Scholar
  62. 62.
    Polak A, Haynie GD, Hays RM, et al. (1961) Effects of chronic hypercapnia on electrolyte and acid-base equilibrium. I. Adaptation. J Clin Invest 40:1223–37PubMedCrossRefGoogle Scholar
  63. 63.
    Reaich D, Channon SM, Scrimgeour CM, et al. (1992) Ammonium chloride-induced acidosis increases protein breakdown and amino acid oxidation in humans. Am J Physiol 263(4, Part 1):E735–E739PubMedGoogle Scholar
  64. 64.
    Ream AK, Reitz BA, Silverberg GB (1982) Temperature correction of pCO2 and pH in estimating acid-base status: an example of the emperor's new clothes? Anesthesiology 56(1):41–4PubMedCrossRefGoogle Scholar
  65. 65.
    Relman AS (1954) What are acids and bases? Am J Med 17(4):435–7PubMedCrossRefGoogle Scholar
  66. 66.
    Relman AS (1972) Metabolic consequences of acid-base disorders. Kidney Int 1(5):347–59PubMedCrossRefGoogle Scholar
  67. 67.
    Rimmer JM, Gennari FJ (1987) Metabolic alkalosis. J Intensive Care Med 2:137–50CrossRefGoogle Scholar
  68. 68.
    Rose BD (2001) Clinical physiology of acid-base and electrolyte disorders, 5th ed. New York: McGraw-Hill, x, 992 pGoogle Scholar
  69. 69.
    Schrier RW (2007) Diseases of the kidney and urinary tract, 8th ed. Philadelphia: Wolters Kluwer Health/Lippincott Williams & WilkinsGoogle Scholar
  70. 70.
    Shapiro et al. (1994) Clinical application of blood gases, 5th ed. St. Louis: Mosby-Year Book, p. 128Google Scholar
  71. 71.
    Spriet LL, Lindinger MI, Heigenhauser GJ, et al. (1986) Effects of alkalosis on skeletal muscle metabolism and performance during exercise. Am J Physiol 251(5, Part 2): R833–R839PubMedGoogle Scholar
  72. 72.
    Sutton JR, Jones NS, Toews CJ (1981) Effect of PH on muscle glycolysis during exercise. Clin Sci 61(3):331–8PubMedGoogle Scholar
  73. 73.
    Van Yperselle de S, Brasseur L, DeConick JD (1966) The “carbon dioxide response curve” for chronic hypercapnia in man. N Engl J Med 275(3):117–22Google Scholar
  74. 74.
    West JB (2005) Respiratory physiology: the essentials, 7th ed. Philadelphia: Lippincott Williams & Wilkins, ix, 186Google Scholar
  75. 75.
    Williams AJ (1998) ABC of oxygen: assessing and interpreting arterial blood gases and acid-base balance. BMJ 317(7167):1213–16PubMedGoogle Scholar
  76. 76.
    Wrenn KD, Slovis CM, Minion GE, et al. (1991) The syndrome of alcoholic ketoacidosis. Am J Med 91(2):119–28PubMedCrossRefGoogle Scholar
  77. 77.
    Yatani A, Fujino T, Kinoshita K, et al. (1981) Excess lactate modulates ionic currents and tension components in frog atrial muscle. J Mol Cell Cardiol 3(2):147–61CrossRefGoogle Scholar
  78. 78.
    Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The Acute Respiratory Distress Syndrome Network (2000) N Engl J Med 342(18):1301–8Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • E. Al-Khadra
    • 1
  1. 1.Cincinnati Children's Hospital Medical Center Critical CareCincinnatiUSA

Personalised recommendations