Rule-Based Modelling of Cellular Signalling

  • Vincent Danos
  • Jérôme Feret
  • Walter Fontana
  • Russell Harmer
  • Jean Krivine
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4703)

Abstract

Modelling is becoming a necessity in studying biological signalling pathways, because the combinatorial complexity of such systems rapidly overwhelms intuitive and qualitative forms of reasoning. Yet, this same combinatorial explosion makes the traditional modelling paradigm based on systems of differential equations impractical. In contrast, agent-based or concurrent languages, such as κ [1,2,3] or the closely related BioNetGen language [4,5,6,7,8,9,10], describe biological interactions in terms of rules, thereby avoiding the combinatorial explosion besetting differential equations. Rules are expressed in an intuitive graphical form that transparently represents biological knowledge. In this way, rules become a natural unit of model building, modification, and discussion. We illustrate this with a sizeable example obtained from refactoring two models of EGF receptor signalling that are based on differential equations [11,12]. An exciting aspect of the agent-based approach is that it naturally lends itself to the identification and analysis of the causal structures that deeply shape the dynamical, and perhaps even evolutionary, characteristics of complex distributed biological systems. In particular, one can adapt the notions of causality and conflict, familiar from concurrency theory, to κ, our representation language of choice. Using the EGF receptor model as an example, we show how causality enables the formalization of the colloquial concept of pathway and, perhaps more surprisingly, how conflict can be used to dissect the signalling dynamics to obtain a qualitative handle on the range of system behaviours. By taming the combinatorial explosion, and exposing the causal structures and key kinetic junctures in a model, agent- and rule-based representations hold promise for making modelling more powerful, more perspicuous, and of appeal to a wider audience.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Curien, P.L., Danos, V., Krivine, J., Zhang, M.: Computational self-assembly (submitted) (February 2007)Google Scholar
  2. 2.
    Danos, V., Laneve, C.: Formal molecular biology. Theoretical Computer Science 325(1), 69–110 (2004)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Danos, V., Laneve, C.: Core formal molecular biology. In: Degano, P. (ed.) ESOP 2003 and ETAPS 2003. LNCS, vol. 2618, pp. 302–318. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  4. 4.
    Faeder, J., Blinov, M.B.G., Hlavacek, W.: BioNetGen: software for rule-based modeling of signal transduction based on the interactions of molecular domains. Complexity 10, 22–41 (2005)CrossRefGoogle Scholar
  5. 5.
    Blinov, M., Yang, J., Faeder, J., Hlavacek, W.: Graph theory for rule-based modeling of biochemical networks. In: Proc. BioCONCUR 2005 (2006)Google Scholar
  6. 6.
    Faeder, J., Blinov, M., Hlavacek, W.: Graphical rule-based representation of signal-transduction networks. In: Proc. ACM Symp. Appl. Computing, pp. 133–140. ACM Press, New York (2005)Google Scholar
  7. 7.
    Faeder, J.R., Blinov, M.L., Goldstein, B., Hlavacek, W.S.: Combinatorial complexity and dynamical restriction of network flows in signal transduction. Systems Biology 2(1), 5–15 (2005)CrossRefGoogle Scholar
  8. 8.
    Blinov, M.L., Yang, J., Faeder, J.R., Hlavacek, W.S.: Depicting signaling cascades. Nat. Biotechnol. 24(2), 1–2 (2006)CrossRefGoogle Scholar
  9. 9.
    Blinov, M.L., Faeder, J.R., Goldstein, B., Hlavacek, W.S.: A network model of early events in epidermal growth factor receptor signaling that accounts for combinatorial complexity. BioSystems 83, 136–151 (2006)CrossRefGoogle Scholar
  10. 10.
    Hlavacek, W., Faeder, J., Blinov, M., Posner, R., Hucka, M., Fontana, W.: Rules for Modeling Signal-Transduction Systems. Science’s STKE 2006. 344 (2006)Google Scholar
  11. 11.
    Brightman, F., Fell, D.: Differential feedback regulation of the MAPK cascade underlies the quantitative differences in EGF and NGF signalling in PC12 cells. FEBS Lett. 482(3), 169–174 (2000)CrossRefGoogle Scholar
  12. 12.
    Schoeberl, B., Eichler-Jonsson, C., Gilles, E.D., Müller, G.: Computational modeling of the dynamics of the map kinase cascade activated by surface and internalized EGF receptors. Nature Biotechnology 20, 370–375 (2002)CrossRefGoogle Scholar
  13. 13.
    Orton, R.J., Sturm, O.E., Vyshemirsky, V., Calder, M., Gilbert, D.R., Kolch, W.: Computational modelling of the receptor tyrosine kinase activated MAPK pathway. Biochemical Journal 392(2), 249–261 (2005)CrossRefGoogle Scholar
  14. 14.
    Huang, C., Ferrell, J.: Ultrasensitivity in the mitogen-activated protein kinase cascade (1996)Google Scholar
  15. 15.
    Kholodenko, B., Demin, O., Moehren, G., Hoek, J.: Quantification of Short Term Signaling by the Epidermal Growth Factor Receptor. Journal of Biological Chemistry 274(42), 30169–30181 (1999)CrossRefGoogle Scholar
  16. 16.
    Kholodenko, B.: Negative feedback and ultrasensitivity can bring about oscillations in the mitogen-activated protein kinase cascades (2000)Google Scholar
  17. 17.
    Pawson, T., Nash, P.: Assembly of Cell Regulatory Systems Through Protein Interaction Domains. Science 300(5618), 445–452 (2003)CrossRefGoogle Scholar
  18. 18.
    Blinov, M., Faeder, J., Hlavacek, W.: BioNetGen: software for rule-based modeling of signal transduction based on the interactions of molecular domains. Bioinformatics 20, 3289–3292 (2004)CrossRefGoogle Scholar
  19. 19.
    Eker, S., Knapp, M., Laderoute, K., Lincoln, P., Meseguer, J., Sonmez, K.: Pathway logic: Symbolic analysis of biological signaling. In: Proceedings of the Pacific Symposium on Biocomputing. pp. 400–412 (January 2002)Google Scholar
  20. 20.
    Milner, R.: Communicating and mobile systems: the π-calculus. Cambridge University Press, Cambridge (1999)Google Scholar
  21. 21.
    Regev, A., Silverman, W., Shapiro, E.: Representation and simulation of biochemical processes using the π-calculus process algebra. In: Altman, R.B., Dunker, A.K., Hunter, L., Klein, T.E. (eds.) Pacific Symposium on Biocomputing, vol. 6, pp. 459–470. World Scientific Press, Singapore (2001)Google Scholar
  22. 22.
    Priami, C., Regev, A., Shapiro, E., Silverman, W.: Application of a stochastic name-passing calculus to representation and simulation of molecular processes. Information Processing Letters (2001)Google Scholar
  23. 23.
    Regev, A., Shapiro, E.: Cells as computation. Nature 419 (September 2002)Google Scholar
  24. 24.
    Regev, A., Panina, E.M., Silverman, W., Cardelli, L., Shapiro, E.: Bioambients: An abstraction for biological compartments. Theoretical Computer Science (2003) (to appear)Google Scholar
  25. 25.
    Cardelli, L.: Brane calculi. In: Proceedings of BIO-CONCUR’03, Marseille, France. Electronic Notes in Theoretical Computer Science, Elsevier, Amsterdam (2003) (to appear)Google Scholar
  26. 26.
    Priami, C., Quaglia, P.: Beta binders for biological interactions. Proceedings of CMSB 3082, 20–33 (2004)MathSciNetGoogle Scholar
  27. 27.
    Danos, V., Krivine, J.: Formal molecular biology done in CCS (to appear). In: Proceedings of BIO-CONCUR 2003, Marseille, France. Electronic Notes in Theoretical Computer Science, Elsevier, Amsterdam (2003)Google Scholar
  28. 28.
    Nielsen, M., Winskel, G.: Models For Concurrency. In: Handbook of Logic and the Foundations of Computer Science, vol. 4, pp. 1–148. Oxford University Press, Oxford (1995)Google Scholar
  29. 29.
    Nielsen, M., Plotkin, G., Winskel, G.: Petri nets, event structures and domains. Theoretical Computer Science 13, 85–108 (1981)MATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Baldan, P., Corradini, A., Montanari, U.: Unfolding and event structure semantics for graph grammars. In: Thomas, W. (ed.) ETAPS 1999 and FOSSACS 1999. LNCS, vol. 1578, pp. 367–386. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  31. 31.
    Baldi, C., Degano, P., Priami, C.: Causal pi-calculus for biochemical modeling. In: Proceedings of the AI*IA Workshop on BioInformatics 2002, pp. 69–72 (2002)Google Scholar
  32. 32.
    Curti, M., Degano, P., Priami, C., Baldari, C.: Modelling biochemical pathways through enhanced–calculus. Theoretical Computer Science 325(1), 111–140 (2004)MATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Goldbeter, A., Koshland, D.: An Amplified Sensitivity Arising from Covalent Modification in Biological Systems. Proceedings of the National Academy of Sciences 78(11), 6840–6844 (1981)CrossRefMathSciNetGoogle Scholar
  34. 34.
    Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81, 2340–2361 (1977)CrossRefGoogle Scholar
  35. 35.
    Oda, K., Matsuoka, Y., Funahashi, A., Kitano, H.: A comprehensive pathway map of epidermal growth factor receptor signaling. Molecular Systems Biology 1 (May 2005)Google Scholar
  36. 36.
    Weinberg, R.A.: The Biology of Cancer. Garland Science (June 2006)Google Scholar
  37. 37.
    Hynes, N., Lane, H.: ERBB receptors and cancer: the complexity of targeted inhibitors. Nature Reviews Cancer 5(5), 341–354 (2005)CrossRefGoogle Scholar
  38. 38.
    Milner, R.: Bigraphical reactive systems. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS, vol. 2154, pp. 16–35. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  39. 39.
    Winskel, G.: An introduction to event structures. In: REX Workshop 1988. LNCS, Springer, Heidelberg (1989)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Vincent Danos
    • 1
    • 3
    • 4
  • Jérôme Feret
    • 2
  • Walter Fontana
    • 3
  • Russell Harmer
    • 3
    • 4
  • Jean Krivine
    • 5
  1. 1.Plectix Biosystems 
  2. 2.École Normale Supérieure 
  3. 3.Harvard Medical School 
  4. 4.CNRS, Université Denis Diderot 
  5. 5.École Polytechnique 

Personalised recommendations