Advertisement

Asynchronous Games: Innocence Without Alternation

  • Paul-André Melliès
  • Samuel Mimram
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4703)

Abstract

The notion of innocent strategy was introduced by Hyland and Ong in order to capture the interactive behaviour of λ-terms and PCF programs. An innocent strategy is defined as an alternating strategy with partial memory, in which the strategy plays according to its view. Extending the definition to non-alternating strategies is problematic, because the traditional definition of views is based on the hypothesis that Opponent and Proponent alternate during the interaction. Here, we take advantage of the diagrammatic reformulation of alternating innocence in asynchronous games, in order to provide a tentative definition of innocence in non-alternating games. The task is interesting, and far from easy. It requires the combination of true concurrency and game semantics in a clean and organic way, clarifying the relationship between asynchronous games and concurrent games in the sense of Abramsky and Melliès. It also requires an interactive reformulation of the usual acyclicity criterion of linear logic, as well as a directed variant, as a scheduling criterion.

Keywords

Closure Operator Game Semantic Boolean Game Directed Subset Schedule Criterion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abramsky, S.: Sequentiality vs. concurrency in games and logic. In: MSCS (2003)Google Scholar
  2. 2.
    Abramsky, S., Jagadeesan, R.: Games and Full Completeness for Multiplicative Linear Logic. The Journal of Symbolic Logic 59(2), 543–574 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Abramsky, S., Melliès, P.-A.: Concurrent games and full completeness. In: LICS (1999)Google Scholar
  4. 4.
    Baillot, P., Danos, V., Ehrhard, T., Regnier, L.: Timeless Games. In: CSL (1997)Google Scholar
  5. 5.
    Bednarczyk, M.A.: Categories of asynchronous systems. PhD thesis (1988)Google Scholar
  6. 6.
    Berry, G.: Modèles complètement adéquats et stables des lambda-calculs typés. Thèse de Doctorat d’État, Université Paris VII (1979)Google Scholar
  7. 7.
    Bracho, F., Droste, M., Kuske, D.: Representation of computations in concurrent automata by dependence orders. Theoretical Computer Science 174(1-2), 67–96 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Clerbout, M., Latteux, M., Roos, Y.: The book of traces, ch. 12, pp. 487–552 (1995)Google Scholar
  9. 9.
    Curien, P.L., Faggian, C.: L-Nets, Strategies and Proof-Nets. In: CSL (2005)Google Scholar
  10. 10.
    Danos, V., Regnier, L.: The structure of multiplicatives. Archive for Mathematical Logic 28(3), 181–203 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Droste, M., Kuske, D.: Automata with concurrency relations – a survey. Advances in Logic, Artificial Intelligence and Robotics, pp. 152–172 (2002)Google Scholar
  12. 12.
    Ghica, D.R., Murawski, A.S.: Angelic Semantics of Fine-Grained Concurrency. In: Walukiewicz, I. (ed.) FOSSACS 2004. LNCS, vol. 2987, pp. 211–225. Springer, Heidelberg (2004)Google Scholar
  13. 13.
    Girard, J.-Y.: Linear logic. TCS 50, 1–102 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Gonthier, G., Lévy, J.-J., Melliès, P.-A.: An abstract standardisation theorem. In: LICS (1992)Google Scholar
  15. 15.
    Goubault, É.: Geometry and Concurrency: A User’s Guide. MSCS 10(4), 411–425 (2000)zbMATHMathSciNetGoogle Scholar
  16. 16.
    Joyal, A.: Remarques sur la theorie des jeux à deux personnes. Gazette des Sciences Mathématiques du Quebec 1(4), 46–52 (1977)Google Scholar
  17. 17.
    Laird, J.: A game semantics of the asynchronous π-calculus. In: Abadi, M., de Alfaro, L. (eds.) CONCUR 2005. LNCS, vol. 3653, Springer, Heidelberg (2005)CrossRefGoogle Scholar
  18. 18.
    Melliès, P.-A.: Axiomatic Rewriting 1: A diagrammatic standardization theorem. In: LNCS, pp. 554–638. Springer, Heidelberg (1992)Google Scholar
  19. 19.
    Melliès, P.-A.: Axiomatic rewriting 4: A stability theorem in rewriting theory. In: LICS (1998)Google Scholar
  20. 20.
    Melliès, P.-A.: Asynchronous games 2: the true concurrency of innocence. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, Springer, Heidelberg (2004)Google Scholar
  21. 21.
    Nielsen, M., Plotkin, G., Winskel, G.: Petri Nets, Event Structures and Domains, Part I. Theoretical Computer Science 13, 85–108 (1981)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Panangaden, P., Shanbhogue, V., Stark, E.W.: Stability and sequentiality in data flow networks. In: Paterson, M.S. (ed.) Automata, Languages and Programming. LNCS, vol. 443, pp. 253–264. Springer, Heidelberg (1990)CrossRefGoogle Scholar
  23. 23.
    Sassone, V., Nielsen, M., Winskel, G.: Models for concurrency: Towards a classification. Theoretical Computer Science 170(1), 297–348 (1996)zbMATHMathSciNetGoogle Scholar
  24. 24.
    Shields, M.W.: Concurrent Machines. The Computer Journal 28(5), 449–465 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Varacca, D., Yoshida, N.: Typed Event Structures and the π-calculus. In: MFPS (2006)Google Scholar
  26. 26.
    Winskel, G., Nielsen, M.: Models for concurrency. In: Handbook of Logic in Computer Science, vol. 3, pp. 1–148. Oxford University Press, Oxford (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Paul-André Melliès
    • 1
  • Samuel Mimram
    • 1
  1. 1.Équipe PPS, CNRS and Université Paris 7, 2 place Jussieu, case 7017, 75251 Paris cedex 05France

Personalised recommendations