Interpreting a Finitary Pi-calculus in Differential Interaction Nets

  • Thomas Ehrhard
  • Olivier Laurent
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4703)

Abstract

We propose and study a translation of a pi-calculus without sums nor replication/recursion into an untyped and essentially promotion-free version of differential interaction nets. We define a transition system of labeled processes and a transition system of labeled differential interaction nets. We prove that our translation from processes to nets is a bisimulation between these two transition systems. This shows that differential interaction nets are sufficiently expressive for representing concurrency and mobility, as formalized by the pi-calculus.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AC98]
    Amadio, R., Curien, P.-L.: Domains and lambda-calculi. Cambridge Tracts in Theoretical Computer Science, vol. 46. Cambridge University Press, Cambridge (1998)MATHGoogle Scholar
  2. [AM99]
    Abramsky, S., Melliès, P.-A.: Concurrent games and full completeness. In: Proceedings of the 14th Annual IEEE Symposium on Logic in Computer Science, IEEE Computer Society Press, Los Alamitos (1999)Google Scholar
  3. [Bef05]
    Beffara, E.: Logique, Réalisabilité et Concurrence. PhD thesis, Université Denis Diderot (2005)Google Scholar
  4. [BHY03]
    Berger, M., Honda, K., Yoshida, N.: Strong normalisability in the pi-calculus. Information and Computation (2003) (to appear)Google Scholar
  5. [BM05]
    Beffara, E., Maurel, F.: Concurrent nets: a study of prefixing in process calculi, vol. 356. Theoretical Computer Science (2005)Google Scholar
  6. [CF06]
    Curien, P.-L., Faggian, C.: An approach to innocent strategies as graphs. Technical report, Preuves, Programmes et Systèmes, Submitted for publication (2006)Google Scholar
  7. [Ehr05]
    Ehrhard, T.: Finiteness spaces. Mathematical Structures in Computer Science 15(4), 615–646 (2005)MATHCrossRefMathSciNetGoogle Scholar
  8. [EL07]
    Ehrhard, T., Laurent, O.: Acyclic solos (submitted, 2007)Google Scholar
  9. [ER06]
    Ehrhard, T., Regnier, L.: Differential interaction nets. Theoretical Computer Science (2006) (to appear)Google Scholar
  10. [EW97]
    Engberg, U., Winskel, G.: Completeness results for linear logic on petri nets. Annals of Pure and Applied Logic 86(2), 101–135 (1997)MATHCrossRefMathSciNetGoogle Scholar
  11. [FM05]
    Faggian, C., Maurel, F.: Ludics nets, a game model of concurrent interaction. In: Proceedings of the 20th Annual IEEE Symposium on Logic in Computer Science, pp. 376–385. IEEE Computer Society, Los Alamitos (2005)Google Scholar
  12. [Gir87]
    Girard, J.-Y.: Linear logic. Theoretical Computer Science 50, 1–102 (1987)MATHCrossRefMathSciNetGoogle Scholar
  13. [Gir88]
    Girard, J.-Y.: Normal functors, power series and the λ-calculus. Annals of Pure and Applied Logic 37, 129–177 (1988)MATHCrossRefMathSciNetGoogle Scholar
  14. [HL07]
    Honda, K., Laurent, O.: An exact correspondence between a typed π-calculus and polarized proof-nets (2007) (in preparation)Google Scholar
  15. [JM04]
    Jensen, O., Milner, R.: Bigraphs and mobile processes (revised). Technical report, Cambridge University Computer Laboratory (2004)Google Scholar
  16. [Laf95]
    Lafont, Y.: From proof nets to interaction nets. In: Girard, J.-Y., Lafont, Y., Regnier, L. (eds.) Advances in Linear Logic, pp. 225–247. Cambridge University Press, Cambridge (1995), Proceedings of the Workshop on Linear Logic, Ithaca, New York, June 1993Google Scholar
  17. [LPV01]
    Laneve, C., Parrow, J., Victor, B.: Solo diagrams. In: Kobayashi, N., Pierce, B.C. (eds.) TACS 2001. LNCS, vol. 2215, Springer, Heidelberg (2001)CrossRefGoogle Scholar
  18. [LV03]
    Laneve, C., Victor, B.: Solos in concert. Mathematical Structures in Computer Science 13(5), 657–683 (2003)CrossRefMathSciNetGoogle Scholar
  19. [Maz05]
    Mazza, D.: Multiport interaction nets and concurrency. In: Abadi, M., de Alfaro, L. (eds.) CONCUR 2005. LNCS, vol. 3653, pp. 21–35. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  20. [Mel06]
    Melliès, P.-A.: Asynchronous games 2: the true concurrency of innocence. Theoretical Computer Science 358(2), 200–228 (2006)MATHCrossRefMathSciNetGoogle Scholar
  21. [Mil93]
    Milner, R.: The polyadic pi-calculus: a tutorial. In: Logic and Algebra of Specification, pp. 203–246. Springer, Heidelberg (1993)Google Scholar
  22. [Plo76]
    Plotkin, G.: A powerdomain construction. SIAM Journal of Computing 5(3), 452–487 (1976)MATHCrossRefMathSciNetGoogle Scholar
  23. [Reg92]
    Regnier, L.: Lambda-Calcul et Réseaux. Thèse de doctorat, Université Paris 7 (January 1992)Google Scholar
  24. [SW01]
    Sangiorgi, D., Walker, D.: The pi-calculus: a Theory of Mobile Processes. Cambridge University Press, Cambridge (2001)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Thomas Ehrhard
    • 1
  • Olivier Laurent
    • 1
  1. 1.Preuves, Programmes & Systèmes, Université Denis Diderot and CNRS 

Personalised recommendations