Using Evolving Agents to Critique Subjective Music Compositions

  • Chuen-Tsai Sun
  • Ji-Lung Hsieh
  • Chung-Yuan Huang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4456)


The authors describe a recommender model that uses intermediate agents to evaluate a large body of subjective data according to a set of rules and make recommendations to users. After scoring recommended items, agents adapt their own selection rules via interactive evolutionary computing to fit user tastes, even when user preferences undergo a rapid change. The model can be applied to such tasks as critiquing large numbers of music or written compositions. In this paper we use musical selections to illustrate how agents make recommendations and report the results of several experiments designed to test the model’s ability to adapt to rapidly changing conditions yet still make appropriate decisions and recommendations.


Music recommender system interactive evolutionary computing adaptive agent critiquing subjective data content-based filtering 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kazuhiro, I., Yoshinori, H., Shogo, N.: Content-Based Filtering System for Music Data. In: Symposium on Applications and the Internet-Workshops. Tokyo, Japan p. 480 (2004)Google Scholar
  2. 2.
    Ben Schafer, J., A., K.J., Riedl, J.: E-Commerce Recommendation Applications. Data Mining and Knowledge Discovery 5, 115–153 (2001)MATHCrossRefGoogle Scholar
  3. 3.
    Chen, H.C., Chen, A.L.P.: A Music Recommendation System Based on Music and User Grouping. Journal of Intelligent Information Systems 24, 113–132 (2005)MATHCrossRefGoogle Scholar
  4. 4.
    Cho, S.B.: Emotional Image and Musical Information Retrieval with Interactive Genetic Algorithm. Proceedings of the IEEE 92, 702–711 (2004)CrossRefGoogle Scholar
  5. 5.
    Cho, S.B., Lee, J.Y.: A Human-Oriented Image Retrieval System using Interactive Genetic Algorithm. IEEE Transactions on Systems, Man and Cybernetics, Part A 32, 452–458 (2002)CrossRefGoogle Scholar
  6. 6.
    Li, Q., Myaeng, S.H., Guan, D.H., Kim, B.M.: A Probabilistic Model for Music Recommendation Considering Audio Features. In: Lee, G.G., Yamada, A., Meng, H., Myaeng, S.-H. (eds.) Information Retrieval Technology. LNCS, vol. 3689, Springer, Heidelberg (2005)Google Scholar
  7. 7.
    Balabanovic, M., Shoham, Y.: Content-based, Collaborative Recommendation. Communication of the ACM 40, 66–72 (1997)CrossRefGoogle Scholar
  8. 8.
    Konstan, J.A., Miller, B.N., Maltz, D., Herlocker, J.L., Gordon, L.R., Riedl, J.: GroupLens: Applying Collaborative Filtering to Usenet News. Communications of the ACM 40, 77–87 (1997)CrossRefGoogle Scholar
  9. 9.
    Shardanand, U., Maes, P.: Social Information Filtering: Algorithms for Automating Word of Mouth. In: Katz, L.R., Mack, R., Marks, L., Rosson, M.B., Nielsen, J. (eds.) Proceedings of the SIGCHI conference on Human factors in computing systems, Denver, Colorado, United States, pp. 210–217 (1995)Google Scholar
  10. 10.
    Kuo, F.F., Shan, M.K.: A Personalized Music Filtering System Based on Melody Style Classification. In: Proceedings of Second IEEE International Conference on Data Mining, Maebashi City, Gumma Prefecture, Japan, pp. 649–652 (2002)Google Scholar
  11. 11.
    Mooney, R.J., Roy, L.: Content-Based Book Recommending using Learning for Text Categorization. In: Nurnberg, P.J., Hicks, D.L., Furuta, R. (eds.) Proceedings of the fifth ACM conference on Digital libraries San Antonio, Texas, United States, PP. 195–204 (2000)Google Scholar
  12. 12.
    Fisk, D.: An Application of Social Filtering to Movie Recommendation. Bt Technology Journal 14, 124–132 (1996)Google Scholar
  13. 13.
    Mukherjee, R., Sajja, E., Sen, S.: A Movie Recommendation System - An Application of Voting Theory in User Modeling. User Modeling and User-Adapted Interaction 13, 5–33 (2003)CrossRefGoogle Scholar
  14. 14.
    Chaffee, J., Gauch, S.: Personal Ontologies for Web Navigation. In: Proceedings of the ninth international conference on Information and knowledge management. McLean, Virginia, United States, pp. 227–234 (2000)Google Scholar
  15. 15.
    Chiang, J.H., Chen, Y.C.: An Intelligent News Recommender Agent for Filtering and Categorizing Large Volumes of Text Corpus. International Journal of Intelligent Systems 19, 201–216 (2004)MATHCrossRefGoogle Scholar
  16. 16.
    Pazzani, M.J.: A Framework for Collaborative, Content-Based and Demographic Filtering. Artificial Intelligence Review 13, 393–408 (1999)CrossRefGoogle Scholar
  17. 17.
    Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor (1975)Google Scholar
  18. 18.
    Takagi, H.: Interactive Evolutionary Computation: Fusion of the Capabilities of EC Optimization and Human Evaluation. Proceedings of the IEEE 89, 1275–1296 (2001)CrossRefGoogle Scholar
  19. 19.
    Maes, P.: Agents that Reduce Work and Information Overload. Communications of the ACM 37, 31–40 (1994)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Chuen-Tsai Sun
    • 1
  • Ji-Lung Hsieh
    • 1
  • Chung-Yuan Huang
    • 2
  1. 1.Department of Computer Science, National Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu 300, TaiwanChina
  2. 2.Department of Computer Science and Information Engineering, Chang Gung University, 259 Wen Hwa 1st Road, Taoyuan 333, TaiwanChina

Personalised recommendations