Pseudospectral Optimal Control and Its Convergence Theorems

  • Wei Kang
  • I. Michael Ross
  • Qi Gong


Summary. During the last decade, pseudospectral (PS) optimal control methods have emerged as demonstrable efficient methods for computational nonlinear optimal control. Some fundamental problems on the feasibility and convergence of the Legendre PS method are addressed. In the first part of this paper, we summarize the main results published separately in a series of papers on these topics. Then, a new result on the feasibility and convergence is proved. Different from existing results in the literature, in this new theorem neither the invertibility of necessary conditions nor the existence of limit points is assumed.


Optimal Control Problem Discrete Approximation Pseudospectral Method AIAA Guidance Optimal Control Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. K. Bollino, I. M. Ross, and D. Doman. Optimal nonlinear feedback guidance for reentry vehicles. Proc. of AIAA Guidance, Navigation and Control Conference, 2006.Google Scholar
  2. J.P. Boyd. Chebyshev and Fourier Spectral Methods. Dover, 2nd edition, 2001.Google Scholar
  3. C. Canuto, M.Y. Hussaini, A. Quarteroni, and T.A. Zang. Spectral Method in Fluid Dynamics. Springer-Verlag, New York, 1998.Google Scholar
  4. J. Cullum. Finite-dimensional approximations of state constrainted continuous optimal problems. SIAM J. Contr. Optimization, 10:649–670, 1972.zbMATHCrossRefMathSciNetGoogle Scholar
  5. A.L. Dontchev and W.W. Hager. The Euler approximation in state constrained optimal control. Mathematics of Computation, 70:173–203, 2000.CrossRefMathSciNetGoogle Scholar
  6. G. Elnagar and M.A. Kazemi. Pseudospectral Chebyshev optimal control of constrained nonlinear dynamical systems. Computational Optimization and Applications, 11:195–217, 1998.zbMATHCrossRefMathSciNetGoogle Scholar
  7. G. Elnagar, M.A. Kazemi, and M. Razzaghi. The pseudospectral Legendre method for discretizing optimal control problems. IEEE Trans. on Automat. Contr., 40:1793–1796, 1995.zbMATHCrossRefMathSciNetGoogle Scholar
  8. F. Fahroo and I.M. Ross. Computational optimal control by spectral collocation with differential inclusion. Proc. of the 1999 Goddard Flight Mechanics Symposium, pages 185–200, 1999. NASA/CP-1999-209235.Google Scholar
  9. F. Fahroo and I.M. Ross. Costate estimation by a Legendre pseudospectral method. J. of Guidance, Control, and Dynamics, 24(2):270–277, 2001.Google Scholar
  10. F. Fahroo and I.M. Ross. Direct trajectory optimization by a Chebyshev pseudospectral method. J. of Guidance, Control, and Dynamics, 25(1):160–166, 2002.Google Scholar
  11. F. Fahroo and I.M. Ross. Pseudospectral methods for infinite-horizon nonlinear optimal control problems. Proc. of AIAA Guidance, Navigation and Control Conference, 2005.Google Scholar
  12. Q. Gong, W. Kang, and I.M. Ross. A pseudospectral method for the optimal control of constrained feedback linearizable systems. IEEE Trans. on Automat. Contr., 51(7):1115–1129, 2006.CrossRefMathSciNetGoogle Scholar
  13. W.W. Hager. Runge-Kutta methods in optimal control and the transformed adjoint system. Numerische Mathematik, 87:247–282, 2000.zbMATHCrossRefMathSciNetGoogle Scholar
  14. S.I. Infeld and W. Murray. Optimization of stationkeeping for a libration point mission. AAS Spaceflight Mechanics Meeting, 2004. AAS 04-150.Google Scholar
  15. W. Kang, Q. Gong, and I.M. Ross. Convergence of pseudospectral methods for a class of discontinuous optimal control. Proc. of the 44rd IEEE Conf. on Decision and Contr., 2005.Google Scholar
  16. P. Lu, H. Sun, and B. Tsai. Closed-loop endoatmospheric ascent guidance. J. of Guidance, Control, and Dynamics, 26(2):283–294, 2003.CrossRefGoogle Scholar
  17. E. Polak. Optimization: Algorithms and Consistent Approximations. Springer-Verlag, Heidelberg, 1997.zbMATHGoogle Scholar
  18. L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze, and E.F. Mischenko. The Mathematical Theory of Optimal Processes. Wiley-Interscience, New York, 1962.zbMATHGoogle Scholar
  19. J. Rea. Launch vehicle trajectory optimization using a Legendre pseudospectral method. Proc. of AIAA Guidance, Navigation and Control Conference, 2003. Paper No. AIAA 2003-5640.Google Scholar
  20. S.M. Robinson. Strongly regular generalized equations. Mathematics of Operations Research, 5:43–62, 1980.zbMATHMathSciNetGoogle Scholar
  21. S.M. Robinson. An implicit function theorem for a class of nonsmooth functions. Mathematics of Operations Research, 16:292–309, 1991.zbMATHMathSciNetCrossRefGoogle Scholar
  22. I.M. Ross and F. Fahroo. A unified framework for real-time optimal control. Proc. of the 42nd IEEE Conf. on Decision and Contr., 2003.Google Scholar
  23. I.M. Ross and F. Fahroo. Pseudospectral knotting methods for solving optimal control problems. J. of Guidance, Control, and Dynamics, 27(3):397–405, 2004.Google Scholar
  24. I.M. Ross and F. Fahroo. Issues in the real-time computation of optimal control. Mathematical and Computer Modelling, An International Journal, 43(9–10):1172–1188, 2006.CrossRefMathSciNetzbMATHGoogle Scholar
  25. I.M. Ross, Q. Gong, F. Fahroo, and W. Kang. Practical stabilization through real-time optimal control. Proc. of the 2006 Amer. Contr. Conf., 2006.Google Scholar
  26. I.M. Ross, P. Sekhavat, A. Fleming, and Q. Gong. Pseudospectral feedback control: foundations, examples and experimental results. Proc. of AIAA Guidance, Navigation and Control Conference, 2006. AIAA-2006-6354.Google Scholar
  27. G. Sansone, A.H. Diamond, and E. Hille. Orthogonal Functions. Robert E. Krieger Publishing Co., Huntington, New York, 1977.zbMATHGoogle Scholar
  28. A. Schwartz and E. Polak. Consistent approximations for optimal control problems based on Runge-Kutta integration. SIAM J. Contr. Optimization, 34:1235–1269, 1996.zbMATHCrossRefMathSciNetGoogle Scholar
  29. P. Sekhavat, A. Fleming, and I.M. Ross. Time-optimal nonlinear feedback control for the NPSAT1 spacecraft. Proc. of the 2005 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 2005.Google Scholar
  30. S. Stanton, R. Proulx, and C. D’Souza. Optimal orbit transfer using a Legendre pseudospectral method. Proc. of AAS/AIAA Astrodynamics Specialist Conference, 2003. AAS-03-574.Google Scholar
  31. P. Williams, C. Blanksby, and P. Trivailo. Receding horizon control of tether system using quasi-linearization and Chebyshev pseudospectral approximations. Proc. of AAS/AIAA Astrodynamics Specialist Conference, 2003. AAS-03-534.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Wei Kang
    • 1
  • I. Michael Ross
    • 2
  • Qi Gong
    • 3
  1. 1.Naval Postgraduate SchoolMontereyUSA
  2. 2.Naval Postgraduate SchoolMontereyUSA
  3. 3.Univerisity of Texas at San AntonioSan AntonioUSA

Personalised recommendations