Essential and Redundant Internal Models in Nonlinear Output Regulation

  • Lorenzo Marconi
  • Laurent Praly

Abstract

Summary. This paper is focused on the problem of output regulation for nonlinear systems within the main framework developed in [23]. The main goal is to complement that theory with some new results showing how the dimension of the internal model-based regulator can be reduced by preserving the so-called internal model property. It is shown how the problem of reducing the regulator dimension can be approached by identifying “observability” parts of the so-called steady-state input generator system. A local analysis based on canonical geometric tools and local observability decomposition is also presented to identify lower bounds on the regulator dimension. Possible benefits in designing redundant internal models are also discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V. Andrieu and L. Praly. On the existence of a Kazantis-Kravaris/Luenberger observer. SIAM J. Contr. Optimization, 45:432–456, 2006.MathSciNetGoogle Scholar
  2. W.M. Boothby. An Introduction to Differentiable Manifolds and Riemannian Geometry. Academic Press, 1975.Google Scholar
  3. C.I. Byrnes, F. Delli Priscoli, A. Isidori, and W. Kang. Structurally stable output regulation of nonlinear systems. Automatica, 33:369–385, 1997.MATHCrossRefMathSciNetGoogle Scholar
  4. C.I. Byrnes and A. Isidori. Limit sets, zero dynamics and internal models in the problem of nonlinear output regulation. IEEE Trans. on Automat. Contr., 48:1712–1723, 2003.CrossRefMathSciNetGoogle Scholar
  5. C.I. Byrnes and A. Isidori. Nonlinear internal models for output regulation. IEEE Trans. on Automat. Contr., 49:2244–2247, 2004.CrossRefMathSciNetGoogle Scholar
  6. Z. Chen and J. Huang. Global robust servomechanism problem of lower triangular systems in the general case. Systems & Control Letters, 52:209–220, 2004.MATHCrossRefMathSciNetGoogle Scholar
  7. F. Delli Priscoli. Output regulation with nonlinear internal models. Systems & Control Letters, 53:177–185, 2004.MATHCrossRefMathSciNetGoogle Scholar
  8. F. Delli Priscoli, L. Marconi, and A. Isidori. New approach to adaptive nonlinear regulation. SIAM J. Contr. Optimization, 45:829–855, 2006.MATHCrossRefMathSciNetGoogle Scholar
  9. F. Delli Priscoli, L. Marconi, and A. Isidori. Nonlinear observers as nonlinear internal models. Systems & Control Letters, 55:640–649, 2006.MATHCrossRefMathSciNetGoogle Scholar
  10. B. Doubrovine, S. Novikov, and A. Fomenko. Modern Geometry-Methods and Applications. Part I: The Geometry of Surfaces, Transformation Groups and Fields, volume 93 of Graduate Texts in Mathematics. Springer Verlag, 2nd edition, 1992.Google Scholar
  11. M. Fliess and I. Kupka. A finiteness criterion for nonlinear input-output differential systems. SIAM J. Contr. Optimization, 21:721–728, 1983.MATHCrossRefMathSciNetGoogle Scholar
  12. B.A. Francis and W.M. Wonham. The internal model principle of control theory. Automatica, 12:457–465, 1976.MATHCrossRefMathSciNetGoogle Scholar
  13. J.K. Hale, L.T. Magalhães, and W.M. Oliva. Dynamics in Infinite Dimensions. Springer Verlag, New York, 2002.MATHGoogle Scholar
  14. R. Hermann and A.J. Krener. Nonlinear controllability and observability. IEEE Trans. on Automat. Contr., 22:728–740, 1977.MATHCrossRefMathSciNetGoogle Scholar
  15. J. Huang and C.F. Lin. On a robust nonlinear multivariable servomechanism problem. IEEE Trans. on Automat. Contr., 39:1510–1513, 1994.MATHCrossRefMathSciNetGoogle Scholar
  16. A. Isidori. Nonlinear Control Sytems. Springer Verlag, New York, 3rd edition, 1995.Google Scholar
  17. A. Isidori. Nonlinear Control Systems II. Springer Verlag, New York, 1st edition, 1999.MATHGoogle Scholar
  18. A. Isidori and C.I. Byrnes. Output regulation of nonlinear systems. IEEE Trans. on Automat. Contr., 25:131–140, 1990.CrossRefMathSciNetGoogle Scholar
  19. A. Isidori, L. Marconi, and A. Serrani. Robust Autonomous Guidance: An Internal Model-based Approach. Limited series Advances in Industrial Control. Springer Verlag, London, 2003.Google Scholar
  20. K. Kazantzis and C. Kravaris. Nonlinear observer design using Lyapunov’s auxiliary theorem. Systems & Control Letters, 34:241–247, 1998.MATHCrossRefMathSciNetGoogle Scholar
  21. H. Khalil. Robust servomechanism output feedback controllers for feedback linearizable systems. Automatica, 30:587–1599, 1994.CrossRefMathSciNetGoogle Scholar
  22. L. Marconi and L. Praly. Uniform practical nonlinear output regulation. IEEE Trans. on Automat. Contr., 2006. Submitted.Google Scholar
  23. L. Marconi, L. Praly, and A. Isidori. Output stabilization via nonlinear Luenberger observers. SIAM J. Contr. Optimization, 45:2277–2298, 2007.CrossRefMathSciNetGoogle Scholar
  24. A. Serrani, A. Isidori, and L. Marconi. Semiglobal output regulation for minimum-phase systems. Int. J. of Robust and Nonlinear Control, 10:379–396, 2000.MATHCrossRefMathSciNetGoogle Scholar
  25. A. Serrani, A. Isidori, and L. Marconi. Semiglobal nonlinear output regulation with adaptive internal model. IEEE Trans. on Automat. Contr., 46:1178–1194, 2001.MATHCrossRefMathSciNetGoogle Scholar
  26. M. Spivak. (A Comprehensive Introduction to) Differential Geometry, volume 1. Publish or Perish, Inc., 2nd edition, 1979.Google Scholar
  27. A.R. Teel and L. Praly. Tools for semiglobal stabilization by partial state and output feedback. SIAM J. Contr. Optimization, 33:1443–1485, 1995.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Lorenzo Marconi
    • 1
  • Laurent Praly
    • 2
  1. 1.University of BolognaBolognaItaly
  2. 2.´Ecole des Mines de ParisFontainebleauFrance

Personalised recommendations