Biological Iron Oxidation and Sulfate Reduction in the Treatment of Acid Mine Drainage at Low Temperatures

  • Anna H. Kaksonen
  • Mark Dopson
  • Olia Karnachuk
  • Olli H. Tuovinen
  • Jaakko A. Puhakka

Acid mine drainage (AMD) is the result of exposure of sulfidic seams to the oxidizing and leaching action of water—rain water, humidity, and groundwater— and is exacerbated by microorganisms that catalyze the solubilization of sulfide minerals by the regeneration of Fe3+ and oxidation of their dissolution products as the source of energy. Typical AMD has a low pH and a high sulfate and ferric iron concentration although other metals may also be present. The chemical composition of AMD varies with sulfide minerals associated with coal and metal mines. At low pH, ferric iron in AMD participates in the leaching action, as shown for pyrite (FeS2) and chalcopyrite (CuFeS2):

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahonen L, Tuovinen OH (1989) Microbiological oxidation of ferrous iron at low temperatures. Appl Environ Microbiol 55:312–316.PubMedGoogle Scholar
  2. Ahonen L, Tuovinen OH (1990) Kinetics of sulfur oxidation at suboptimal temperatures. Appl Environ Microbiol 56:560–562.PubMedGoogle Scholar
  3. Ahonen L, Tuovinen OH (1991) Temperature effects on bacterial leaching of sulfide minerals in shake flask experiments. Appl Environ Microbiol 57:138–145.PubMedGoogle Scholar
  4. Ahonen L, Tuovinen OH (1992) Bacterial oxidation of sulfide minerals in column leaching experiments at suboptimal temperatures. Appl Environ Microbiol 58:600–606.PubMedGoogle Scholar
  5. Ahonen L, Hietanen P, Tuovinen OH (1990) Temperature relationships of iron-oxidizing bacteria. In: Karavaiko GI, Rossi G, Avakyan ZA (eds) International seminar on dump and underground bacterial leaching of metals from ores. Centre for International Projects, USSR Commission for United Nations Environment Programme, Moscow, USSR, pp 21–28.Google Scholar
  6. Benner SG, Blowes DW, Ptacek CJ, Mayer KU (2002) Rates of sulfate reduction and metal sulfide precipitation in a permeable reactive barrier. Appl Geochem 17:301–320.CrossRefGoogle Scholar
  7. Berthelot D, Leduc LG, Ferroni GD (1993) Temperature studies of iron-oxidizing autotrophs and acidophilic heterotrophs isolated from uranium mines. Can J Microbiol 39:384–388.CrossRefGoogle Scholar
  8. Blodau C, Hoffmann S, Peine A, Peiffer S (1998) Iron and sulfate reduction in the sediments of acidic mine Lake 116 (Brandenburg, Germany): rates and geochemical evaluation. Water Air Soil Pollut 108:249–270.CrossRefGoogle Scholar
  9. Canfield DE, Jørgensen BB, Fossing H, Glud R, Gundersen J, Ramsing NB, Thamdrup B, Hansen JW, Nielsen LP, Hall POJ (1993) Pathways of organic carbon oxidation in three continental margin sediments. Mar Geol 113:27–40.CrossRefPubMedGoogle Scholar
  10. Canty M (1999) Innovative in situ treatment of acid mine drainage using sulphate-reducing bacteria. In: Leeson A, Alleman BC (eds) Phytoremediation and innovative strategies for specialized remedial applications. The Fifth International In Situ and On-Site Bioremediation Symposium. Battelle Press, Columbus, OH, pp 193–204.Google Scholar
  11. Castro JM, Wielinga BW, Gannon JE, Moore JN (1999) Stimulation of sulfate-reducing bacteria in lake water from a former open-pit mine through addition of organic wastes. Water Environ Res 71: 218–223.CrossRefGoogle Scholar
  12. Cavicchioli R (2006) Cold-adapted archaea. Nature Rev Microbiol 4, 331–343.CrossRefGoogle Scholar
  13. Christensen B, Laake M, Lien T (1996) Treatment of acid mine water by sulfate-reducing bacteria; results from a bench scale experiment. Water Res 30:1617–1624.CrossRefGoogle Scholar
  14. Dopson M, Hakala AK, Rahunen N, Kaksonen AH, Lindström EB, Puhakka JA (2007) Mineral leaching at low temperatures by pure and mixed cultures of acidophilic microorganisms. Biotechnol Bioengin, 97:1205–1215.CrossRefGoogle Scholar
  15. Dvorak DH, Hedin RS, Edenborn HM, McIntire PE (1992) Treatment of metal-contaminated water using bacterial sulphate reduction: Results from pilot-scale reactors. Biotechnol Bioengin 40:609–616.CrossRefGoogle Scholar
  16. Edenborn HM, Brickett LA (2001) Bacteria in gel probes: comparison of the activity of immobilized sulfate-reducing bacteria with in situ sulfate reduction in a wetland sediment. J Microbiol Meth 46:51–62.CrossRefGoogle Scholar
  17. Elberling B (2001) Environmental controls of the seasonal variation in oxygen uptake in sulfidic tailings deposited in a permafrost-affected area. Water Resour Res 37:99–107.CrossRefGoogle Scholar
  18. Elberling B (2004) Disposal of mine tailings in continuous permafrost areas: environmental aspects and future control strategies. In Kimble JM (ed) Cryosols: permafrost-affected soils, Springer, Berlinpp 677–698.Google Scholar
  19. Elberling B (2005) Temperature and oxygen control on pyrite oxidation in frozen mine tailings. Cold Regions Sci Technol 41:121–133.CrossRefGoogle Scholar
  20. Elberling B, Schippers A, Sand W (2000) Bacterial and chemical oxidation of pyritic mine tailings at low temperatures. J Contam Hydrol 41:225–238.CrossRefGoogle Scholar
  21. Elberling B, Søndergaard J, Jensen LA, Schmidt LB, Hansen BU, Asmund G, Bali -Zuni T, Hollesen J, Hanson S, Jansson P-E, Friborg T (2007) Arctic vegetation damage by winter-generated coal mining pollution released upon thawing. Environ Sci Technol 41:2407–2413.CrossRefPubMedGoogle Scholar
  22. Farmer GH, Updegraff DM, Radehaus PM, Bates ER (1995) Metal removal and sulfate reduction in low-sulfate mine drainage. In Hinchee RE, Means JL, Burris DR (eds) Bioremediation of inorganics, Battelle Press, Columbus, OH, pp 17–24.Google Scholar
  23. Ferroni GD, Leduc LG, Todd M (1986) Isolation and temperature characterization of psychrotrophic strains of Thiobacillus ferrooxidans from the environment of a uranium mine. J Gen Appl Microbiol 32:169–175.CrossRefGoogle Scholar
  24. Gagliano WB, Brill MR, Bigham JM, Jones FS, Traina SJ (2004) Chemistry and mineralogy of ochreous sediments in a constructed mine drainage wetland. Geochim Cosmochim Acta 68:2119–2128.CrossRefGoogle Scholar
  25. Gibert O, de Pablo J, Cortina JL, Ayora C (2002) Treatment of acid mine drainage by sulphate-reducing bacteria using permeable reactive barriers: A review from laboratory to full-scale experiments. Rev Environ Sci Biotechnol 1:327–333.CrossRefGoogle Scholar
  26. Govind R, Yang W, Tabak HH (1999) Studies on biorecovery of metals from acid mine drainage. In Leeson A, Alleman, BC (eds) The Fifth International In situ and On-site Bioremediation Symposium. Battelle Press, Columbus, OH, pp 37–46.Google Scholar
  27. Groudev S, Kontopoulos A, Spasova I, Komnitsas K, Angelov A, Georgiev P (1998) In situ treatment of groundwater at Burgas Copper Mines, Bulgaria, by enhancing microbial sulphate reduction. In Herbert K, Kovar K (eds) Groundwater quality: remediation and protection, Proceedings of the GQ’98 Conference. IAHS Publication no. 250, pp 249–255.Google Scholar
  28. Groudeva VI, Groudev SN, Petkova S (1996) Biological treatment of acid drainage waters from a copper mine. Mineral Slov 28:318–320.Google Scholar
  29. Hao OJ (2000) Metal effects on sulfur cycle bacteria and metal removal by sulfate reducing bacteria. In: Lens PNL, Hulshoff Pol L (eds) Environmental technologies to treat sulfur pollution: principles and engineering. IWA Publishing, London, UK, pp 393–414.Google Scholar
  30. Herbert Jr RB, Benner SG, Blowes DW (1998) Reactive barrier treatment of groundwater contaminated by acid mine drainage: sulphur accumulation and sulphide formation. In Herbert K, Kovar K (eds) Groundwater quality: remediation and protection, Proceedings of the GQ’98 Conference. IAHS Publication No. 250, pp 451–457.Google Scholar
  31. Herlihy AT, Mills AL (1985) Sulfate reduction in freshwater sediments receiving acid mine drainage. Appl Environ Microbiol 49:179–186.PubMedGoogle Scholar
  32. Huisman JL, Schouten G, Schultz C (2006) Biologically produced sulphide for purification of process streams, effluent treatment and recovery of metals in the metal and mining industry. Hydrometallurgy 83:106–113.CrossRefGoogle Scholar
  33. Hulshoff Pol LW, Lens PNL, Weijma J, Stams AJM (2001) New developments in reactor and process technology for sulfate reduction. Water Sci Technol 44:67–76.Google Scholar
  34. Hustwit CC, Ackman TE, Erickson PE (1992) The role of oxygen-transfer in acid-mine drainage (AMD) treatment. Water Environ Res 64:817–823.Google Scholar
  35. Isaksen MF, Jørgensen BB (1996) Adaptation of psychrophilic and psychrotrophic sulfate-reducing bacteria to permanently cold marine environments. Appl Environ Microbiol 62:408–414.PubMedGoogle Scholar
  36. Isaksen MF, Teske A (1996) Desulforhopalus vacuolatus gen. nov., sp. gov., a new moderately psychrophilic sulfate-reducing bacterium with gas vacuoles isolated from a temperate estuary. Arch Microbiol 166:160–168.CrossRefGoogle Scholar
  37. Johnson B (2000) Biological removal of sulfurous compounds from inorganic wastewaters. In: Lens P, Hulshoff Pol L (eds) Environmental technologies to treat sulfur pollution: principles and engineering. IWA Publishing, London, UK, pp 175–205.Google Scholar
  38. Jørgensen BB (1982) Mineralization of organic matter in the sea bed—the role of sulfate reduction. Nature 296:643–645.CrossRefGoogle Scholar
  39. Karnachuk OV, Pimenov NV, Yusupov SK, Frank YA, Kaksonen AH, Puhakka JA, Ivanov MV, Lindström EB, Tuovinen OH (2005) Sulfate reduction potential in sediments in the Norilsk mining area, northern Siberia. Geomicrobiol J 22:11–25.CrossRefGoogle Scholar
  40. Kinnunen P H-M, Puhakka JA (2004) High-rate ferric sulfate generation by a Leptospirillum ferriphilum-dominated biofilm and the role of jarosite in biomass retainment in fluidized-bed bioreactor. Biotechnol Bioeng 85:697–705.CrossRefPubMedGoogle Scholar
  41. Kirby CS, Brady JAE (1998) Field determination of Fe2+ oxidation rates in acid mine drainage using a continuously–stirred tank reactor. Appl Geochem 13:509–520.CrossRefGoogle Scholar
  42. Knoblauch C, Jørgensen BB, Harder J (1999a) Community size and metabolic rates of psychrophilic sulfate-reducing bacteria in arctic marine sediments. Appl Environ Microbiol 65:4230–4233.PubMedGoogle Scholar
  43. Knoblauch C, Sahm K, Jørgensen BB (1999b) Psychrophilic sulfate-reducing bacteria isolated from permanently cold arctic marine sediments: description of Desulfofrigus oceanence gen. nov., sp. nov., Desulfofrigus fragile sp. nov., Desulfofaba gelida gen., nov., sp. nov., Desulfotalea psychrophila gen. nov., sp. nov., and Desulfotalea arctica sp. nov. Int J System Evol Microbiol 49: 1631–1643.CrossRefGoogle Scholar
  44. Kovalenko TV, Karavaiko GI, Piskunov VP (1981) Effect of Fe3+ ions in the oxidation of ferrous iron by Thiobacillus ferrooxidans at various temperatures. Mikrobiologiya 51:156–160.Google Scholar
  45. Kupka D, Rzhepishevska OI, Dopson M, Lindström EB, Karnachuk OV, Tuovinen OH (2007) Bacterial oxidation of ferrous iron at low temperatures. Biotechnol Bioengin, 97:1470–1478.CrossRefGoogle Scholar
  46. Kuyucak N, St-Germain P (1994) In situ treatment of acid mine drainage by sulphate reducing bacteria in open pits: scale-up experiences. Proceedings of the Third International Conference on the Abatement of Acidic Drainage, Vol. 2. Pittsburg, PA, pp 303–310.Google Scholar
  47. Kuyucak N, Lyew D, St-Germain P, Wheeland KG (1991) In situ bacterial treatment of AMD in open pits. Proceeding of the Second International Conference on the Abatement of Acidic Drainage, Vol. 1, Montreal, Québec, Canada, pp 335–354.Google Scholar
  48. Kyhn C, Elberling B (2001) Frozen cover actions limiting AMD from mine waste deposited on land in arctic Canada. Cold Regions Sci Technol 32:133–142.CrossRefGoogle Scholar
  49. Langdahl BR, Ingvorsen K (1997) Temperature characteristics of bacterial iron solubilisation and 14C assimilation in naturally exposed sulfide ore material at Citronen Fjord, North Greenland (83°N). FEMS Microbiol Ecol 23:275–283.CrossRefGoogle Scholar
  50. Leduc D, Leduc LG, Ferroni GD (2002) Quantification of bacterial populations indigenous to acidic drainage streams. Water Air Soil Pollut 135:1–21.CrossRefGoogle Scholar
  51. Lein AY, Rusanov II, Savvichev AS, Pimenov NV, Miller YuM, Pavlova GA, Ivanov MV (1996) Biogeochemical processes of the sulfur and carbon cycles in the Kara Sea. Geochimia 11:1027–1044 [in Russian].Google Scholar
  52. Lens P, Vallero M, Esposito G, Zandvoort M (2002) Perspectives of sulfate reducing bioreactors in environmental biotechnology. Rev Environ Sci Biotechnol 1:311–325.CrossRefGoogle Scholar
  53. Ludwig RD, McGregor RG, Blowes DW, Benner SG, Mountjoy K (2002) A permeable reactive barrier for treatment of heavy metals. Ground Water 40:59–66.CrossRefPubMedGoogle Scholar
  54. McNaughton K, Schlitt WJ (2000) Winter field test for heap leaching Carmacks copper ore in Canada’s Yukon Territory. Min Metall Proc 17:186–193.Google Scholar
  55. Meier J, Babenzien H-D, Wendt-Potthoff K (2004) Microbial cycling of iron and sulfur in sediments of acidic and pH-neutral mining lakes in Lusatia (Brandenburg, Germany). Biogeochemistry 67:135–156.CrossRefGoogle Scholar
  56. Meldrum JL, Jamieson HE, Dyke LD (2001) Oxidation of mine tailings from Rankin Inlet, Nunavut, at subzero temperatures. Can Geotechnol J 38:957–966.CrossRefGoogle Scholar
  57. Mustikkamäki U-P (2000) Metallipitoisten vesien biologisesta käsittelystä Outokummun kaivoksilla. Vuoriteollisuus 1: 44–47 [in Finnish].Google Scholar
  58. Murayama T, Konno Y, Sakata T, Imaizumi T (1986) Application of immobilized Thiobacillus ferrooxidans for large-scale treatment of acid mine drainage. Meth Enzymol 136:530–540.CrossRefGoogle Scholar
  59. Nakamura K, Noike T, Matsumoto J (1986) Effect of operation conditions on biological Fe2+ oxidation with rotating biological contactors. Water Res 20:73–77.CrossRefGoogle Scholar
  60. Nedwell DB (1989) Benthic microbial activity in an Antarctic coastal sediment at Signy Island, South Orkney Islands. Estuar Coast Shelf Sci 28:507–516.CrossRefGoogle Scholar
  61. Nicomrat D, Dick WA, Tuovinen OH (2006a) Assessment of the microbial community in a constructed wetland that receives acid coal mine drainage. Microb Ecol 51:83–89.CrossRefPubMedGoogle Scholar
  62. Nicomrat D, Dick WA, Tuovinen OH (2006b) Microbial populations identified by fluorescence in-situ hybridization in a constructed wetland treating acid coal mine drainage. J Environ Qual 35:1329–1337.CrossRefPubMedGoogle Scholar
  63. Okereke A, Stevens SE (1991) Kinetics of iron oxidation by Thiobacillus ferrooxidans. Appl Environ Microbiol 57:1052–1056.PubMedGoogle Scholar
  64. Olem H, Unz RF (1977) Acid mine drainage treatment with rotating biological contactors. Biotechnol Bioeng 19:1475–1491.CrossRefGoogle Scholar
  65. Olem H, Unz RF (1980) Rotating-disc biological treatment of acid mine drainage. J Water Pollut Contr Fed 52:257–269.Google Scholar
  66. Omura T, Umita T, Nenov V, Aizawa J, Onuma M (1991) Biological oxidation of ferrous iron in high acid mine drainage by fluidized bed reactor. Water Sci Technol 23(7–9):1447–1456.Google Scholar
  67. Ozkaya B, Sahinkaya E, Nurmi P, Kaksonen AH, Puhakka JA (2007) Iron oxidation and precipitation in a simulated heap leaching solution in a Leptospirillum ferriphilum dominated biofilm reactor. Hydrometallurgy, 88:67–74.CrossRefGoogle Scholar
  68. Postgate JR (1984) The sulphate-reducing bacteria. Cambridge University Press, Cambridge.Google Scholar
  69. Praharaj T, Fortin D (2004) Determination of acid volatile sulfides and chromium reducible sulfides in Cu-Zn and Au mine tailings. Water Air Soil Poll 155:35–50.CrossRefGoogle Scholar
  70. Rabus R, Bruchert V, Amann J, Konneke M (2002) Physiological response to temperature changes of the marine sulfate-reducing bacterium Desulfobacterium autotrophicum. FEMS Microbiol Ecol 42:409–417.CrossRefPubMedGoogle Scholar
  71. Riekkola-Vanhanen M (1999) In situ bioreclamation of acid mine drainage. In Kuusisto S, Isoaho S, Puhakka J (eds) Environmental science, technology and policy, Proceedings of the 4th Finnish Conference of Environmental Sciences. Finnish Society for Environmental Sciences. Water and Environmental Engineering, Report 9, Institute of Water and Environmental Engineering, Tampere University of Technology, Tampere, Finland, pp 22–25.Google Scholar
  72. Sahinkaya E, Özkaya B, Kaksonen AH, Puhakka JA (2007a) Sulfidogenic fluidized-bed treatment of metal-containing wastewater at low and high temperatures. Biotechnol Bioengin 96:1064–1072.CrossRefGoogle Scholar
  73. Sahinkaya E, Özkaya B, Kaksonen AH, Puhakka JA (2007b) Sulfidogenic fluidized-bed treatment of metal-containing wastewater at 8 and 65 °C temperatures is limited by acetate oxidation. Water Res, 41:2706–2714.CrossRefPubMedGoogle Scholar
  74. Sass H, Berchtold M, Branke J, König H, Cypionka H, Babenzien H-D (1998) Psychrotolerant sulfate-reducing bacteria from an oxic freshwater sediment, description of Desulfovibrio cuneatus sp. nov. and Desulfovibrio litoralis sp. nov. System Appl Microbiol 21:212–219.Google Scholar
  75. Søndergaard J, Elberling B, Asmund G, Gudum C, Iversen KM (2007) Temporal trends of dissolved weathering products released from a high Arctic coal mine waste rock pile in Svalbad (78°N). Appl Geochem 22:1025–1028.CrossRefGoogle Scholar
  76. TsukamotoTK, Killion HA, Miller GC (2004) Column experiments for microbiological treatment of acid mine drainage: low-temperature, low-pH and matrix investigations. Water Res 38:1405–1418.CrossRefPubMedGoogle Scholar
  77. Vandieken V, Knoblauch C, Jørgensen BB (2006) Desulfovibrio frigidus sp. nov. and Desulfovibrio ferrireducens sp. nov., psychrotolerant bacteria isolated from Arctic fjord sediments (Svalbard) with the ability to reduce Fe(III). Int J System Evol Microbiol 56:681–685.CrossRefGoogle Scholar
  78. Vestola E (2004) Treatment of acid mine drainage by sulphate reducing bacteria. Master’s Thesis, Helsinki University of Technology, Helsinki, Finland [in Finnish].Google Scholar
  79. Wildeman T, Cevaal J, Whiting K, Gusek J, Scheuering J (1994) Laboratory and pilot-scale studies on the treatment of acid rock drainage at a closed gold-mining operation in California. Proceedings of the International Land Reclamation and Mine Drainage Conference and the Third International Conference on the Abatement of Acidic Drainage, Pittsburg, PA, pp 379–386.Google Scholar
  80. Wildeman T, Gusek J, Cevaal J, Whiting K, Scheuering J (1995) Biotreatment of acid rock drainage at a gold-mining operation. In Hinchee RE, Means JL, Burris DR (eds) Bioremediation of inorganics, Battelle Press, Columbus, OH, pp 141–148.Google Scholar
  81. Yabuuchi E, Imanaga Y (1976) Oxidation of ferrous ions in mine drainage by iron-oxidizing bacteria. World Min Met Technol 2:943–956.Google Scholar
  82. Zadow JG (1986) Utilization of milk components: Whey. In: Robinson RK (ed) Modern dairy technology, vol 1. Advances in Milk Processing, Elsevier, London, UK, pp 273–316.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Anna H. Kaksonen
    • 1
  • Mark Dopson
    • 2
  • Olia Karnachuk
    • 3
  • Olli H. Tuovinen
    • 4
  • Jaakko A. Puhakka
    • 5
  1. 1.Institute of Environmental Engineering and BiotechnologyTampere University of TechnologyTampereFinland
  2. 2.Department of Molecular BiologyUmeå UniversityUmeåSweden
  3. 3.Department of Plant Physiology and BiotechnologyTomsk State UniversityTomskRussia
  4. 4.Department of MicrobiologyOhio State UniversityColumbusUSA
  5. 5.Institute of Environmental Engineering and BiotechnologyTampere University of TechnologyTampereFinland

Personalised recommendations