Metagenomics: Microbial Community Genomes Revealed

  • Sara Sjöling
  • Don A. Cowan

The rapidly expanding field of metagenomics has revolutionized the ability to analyzemicrobial communities by providing access to ‘true’ microbial diversity. This field has a broad range of applications in the areas of biodiversity, systems biology and biotechnology (Handelsman et al. 2002). As most microbial communities in soil, sediment or aquatic environments are highly complex, consisting of hundreds oreven thousands of species of which only a few have been cultured, the approaches collectively described as metagenomics, community genomics or environmental genomics have been developed to help to unlock this thus far hidden diversity. Metagenomics is therefore the application of modern genomic tools used to analyze the collective genomes of whole microbial communities (the metagenome) in an environmental sample, thereby bypassing the need for isolation or cultivation (Béjà et al. 2000; Riesenfeld et al. 2004b). Even though the tip of the microbial ice-berg has barely been scratched, this approach is rapidly increasing our knowledge of microbial genetic and functional diversity through gene/pathway discovery either by sequencing or activity-based screening strategies (Handelsman 2005).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abe T, Sugawara H, Kinouchi M, Kanaya S, Ikemura T (2005) Novel phylogenetic studies of genomic sequence fragments derived from uncultured microbe mixtures in environmental and clinical samples. DNA Res 12:281–290.CrossRefPubMedGoogle Scholar
  2. Abulencia CB, Wyborski DL, Garcia JA, Podar M, Chen W, Chang SH, Chang HW, Watson D, Brodie EL, Hazen TC, Keller M (2006) Environmental whole-genome amplification to access microbial populations in contaminated sediments. Appl Environ Microbiol 72:3291–3301.CrossRefPubMedGoogle Scholar
  3. Allen EE, Banfield JF (2005) Community genomics in microbial ecology and evolution. Nature Rev Microbiol 3:489–498.CrossRefGoogle Scholar
  4. Angly FE, Felts B, Breitbart M, Salamon P, Edwards RA, Carlson C, Chan AM, Haynes M, Kelley S, Liu H, Mahaffy JM, Meuller JE, Nulton J, Olson R, Parsons R, Rayhawk S, Suttle CA, Rohwer F (2006) The marine viromes of four oceanic regions. PLoS Biol 4:2121–2131.CrossRefGoogle Scholar
  5. Antranikian G, Vorgias CE, Bertoldo C (2005) Extreme environments as a resource for microorganisms and novel biocatalysts. In: LeGal Y, Ulber R (eds) Marine biotechnology I, vol 96. Springer, Berlin, pp 219–262.CrossRefGoogle Scholar
  6. Baker BJ, Tyson GW, Webb RI, Flanagan J, Hugenholtz P, Allen EE, Banfield JF (2006) Lineages of acidophilic archaea revealed by community genomic analysis. Science 314:1933–1935.CrossRefPubMedGoogle Scholar
  7. Béjà O, Aravind L, Koonin EV, Suzuki MT, Hadd A, Nguyen LP, Jovanovich S, Gates CM, Feldman RA, Spudich JL, Spudich EN, DeLong EF (2000) Bacterial rhodopsin: Evidence for a new type of phototrophy in the sea. Science 289:1902–1906.CrossRefPubMedGoogle Scholar
  8. Brady SF, Clardy J (2004) Palmitoylputrescine, an antibiotic isolated from the heterologous expression of DNA extracted from bromeliad tank water. J Nat Prod 67:1283–1286.CrossRefPubMedGoogle Scholar
  9. Breitbart M, Felts B, Kelley S, Mahaffy JM, Nulton J, Salamon P, Rohwer. F (2004) Diversity and population structure of a near-shore marine-sediment viral community. Proc R Soc Lond B 271:565–574.CrossRefGoogle Scholar
  10. Breitbart M, Hewson I, Felts B, Mahaffy JM, Nulton J, Salamon P, Rohwer F (2003) Metagenomic analyses of an uncultured viral community from human feces. J Bacteriol 185:6220–6223.CrossRefPubMedGoogle Scholar
  11. Cavicchioli R, Siddiqui KS, Andrews D, Sowers KR (2002) Low-temperature extremophiles and their applications. Curr Opin Biotechnol 13:253–261.CrossRefPubMedGoogle Scholar
  12. Chen K, Pachter L (2005) Bioinformatics for whole-genome shotgun sequencing of microbial communities. PLoS Comput Biol 1:24e.CrossRefGoogle Scholar
  13. Cowan D, Meyer Q, Stafford W, Muyanga S, Cameron R, Wittwer P (2005) Metagenomic gene discovery: past, present and future. Trends Biotechnol 23:321–329.CrossRefPubMedGoogle Scholar
  14. Curtis TP, Sloan WT, Scannell JW (2002) Estimating prokaryotic diversity and its limits. Proc Natl Acad Sci USA 99:10494–10499.CrossRefPubMedGoogle Scholar
  15. D’Amico S, Collins T, Marx JC, Feller G, Gerday C (2006) Psychrophilic microorganisms: challenges for life. EMBO Reports 7:385–389.CrossRefPubMedGoogle Scholar
  16. Daniel R (2004) The soil metagenome—a rich resource for the discovery of novel natural products. Curr Opin Biotechnol 15:199–204.CrossRefPubMedGoogle Scholar
  17. Daniel R (2005) The metagenomics of soil. Nature Rev Microbiol 3:470–478.CrossRefGoogle Scholar
  18. DeLong EF (2005) Community genomics in the ocean. Nat Rev Microbiol 3:459–469.CrossRefPubMedGoogle Scholar
  19. DeLong EF, Preston CM, Mincer T, Rich V, Hallam SJ, Frigaard N-U, Martinez A, Sullivan MB, Edwards RA, Brito BR, Chisholm SW, Karl DM (2006) Community genomics among stratified microbial assemblages in the oceans interior. Science 311:496–503.CrossRefPubMedGoogle Scholar
  20. Deutschbauer AM, Chivian D, Arkin AP (2006) Genomics for environmental microbiology. Curr Opin Biotechnol 17:229–235.CrossRefPubMedGoogle Scholar
  21. Edwards R, Rodriguez-Brito R, Wegley L, Haynes M, Breitbart M, Peterson D, Saar M, Alexander S, Alexander Jr E, Rohwer F (2006) Using pyrosequencing to shed light on deep mine microbial ecology. BMC Genomics 7:57.CrossRefPubMedGoogle Scholar
  22. Feller G (2003) Molecular adaptations to cold in psychrophilic enzymes. Cell Mol Life Sci 60:648–662.CrossRefPubMedGoogle Scholar
  23. Ferrer M, Martinez-Abarca F, Golyshin PN (2005) Mining genomes and ‘metagenomes’ for novel catalysts. Curr Opin Biotechnol 16:588–593.CrossRefPubMedGoogle Scholar
  24. Gabor EM, de Vries EJ, Janssen DB (2003) Efficient recovery of environmental DNA for expression cloning by indirect extraction methods. FEMS Microbiol Ecol 44:153–163.CrossRefPubMedGoogle Scholar
  25. Gabor EM, de Vries EJ, Janssen DB (2004) Construction, characterization, and use of small-insert gene banks of DNA isolated from soil and enrichment cultures for the recovery of novel amidases. Environ Microbiol 6:948–958.CrossRefPubMedGoogle Scholar
  26. Gill SR, Pop M, DeBoy RT, Eckburg PB, Turnbaugh PJ, Samuel BS, Gordon JI, Relman DA, Fraser-Liggett CM, Nelson KE (2006) Metagenomic analysis of the human distal gut microbiome. Science 312:1355–1359.CrossRefPubMedGoogle Scholar
  27. Gillespie DE, Brady SF, Bettermann AD, Cianciotto NP, Liles MR, Rondon MR, Clardy J, Goodman RM, Handelsman. J (2002) Isolation of antibiotics turbomycin A and B from a metagenomic library of soil microbial DNA. Appl Environ Microbiol 68:4301–4306.CrossRefPubMedGoogle Scholar
  28. Grant S, Grant WD, Cowan DA, Jones BE, Ma Y, Ventosa A, Heaphy S (2006) Identification of eukaryotic open reading frames in metagenomic cDNA libraries made from environmental samples. Appl Environ Microbiol 72:135–143.CrossRefPubMedGoogle Scholar
  29. Gray KA, Richardson TH, Robertson DE, Swanson RV, Subramanian MV (2003) Soil-based gene discovery: a technology to accelerate and broaden biocatalytic applications. In: Laskin AI, Bennett JW, Gadd GM (eds) Advances in Applied Microbiology, vol 52. Elsevier, USA, pp 1–27.Google Scholar
  30. Green BD, Keller M (2006) Capturing the uncultivated majority. Curr Opin Biotechnol 17:236–240.CrossRefPubMedGoogle Scholar
  31. Grzymski JJ, Carter BJ, DeLong EF, Feldman RA, Ghadiri A, Murray AE (2006) Comparative genomics of DNA fragments from six antarctic marine planktonic bacteria. Appl Environ Microbiol 72:1532–1541.CrossRefPubMedGoogle Scholar
  32. Hallam SJ, Putnam NH, Preston CM, Detter JC, Rokhsar D, Richardson PM, DeLong EF (2004) Reverse methanogenesis: testing the hypothesis with environmental genomics. Science 305:1457–1462.CrossRefPubMedGoogle Scholar
  33. Handelsman J (2005) Metagenomics or Megagenomics? Nat Rev Microbiol 3:457–458.CrossRefGoogle Scholar
  34. Handelsman J, Liles M, Mann D, Riesenfeld C, Goodman RM (2002) Cloning the metagenome: culture-independent access to the diversity and functions of the uncultivated microbial world. In: Wren B, Dorrell N (eds) Methods in microbiology, functional microbial genomics, vol 33. Academic Press, New York, pp 241–245.CrossRefGoogle Scholar
  35. Hårdeman F, Sjöling S (2007) Metagenomic approach for the isolation of a novel low-temperature-active lipase from uncultured bacteria of marine sediment. FEMS Microbiol Ecol 59:524–534.PubMedCrossRefGoogle Scholar
  36. Healy FG, Ray RM, Alrich HC, Wilkie AC, Ingram LO, Shanumugam KT (1995) Direct isolation of functional genes encoding cellulases from the microbial consortia in a thermophilic, anaerobic digester maintained on lignocellulose. Appl Microbiol Biotechnol 43:667–674.CrossRefPubMedGoogle Scholar
  37. Henne A, Daniel R, Schmitz R, Gottschalk G (1999) Construction of environmental DNA libraries in Escherichia coli and screening for the presence of genes conferring utilization of 4-hydroxybutyrate. Appl Environ Microbiol 65:3901–3907.PubMedGoogle Scholar
  38. Henne A, Schmitz RA, Bömeke M, Gottschalk G, Daniel R (2000) Screening of environmental DNA libraries for the presence of genes conferring lipolytic activity on Escherichia coli. Appl Environ Microbiol 66:3113–3116.CrossRefPubMedGoogle Scholar
  39. Knietsch A, Waschkowitz T, Bowien S, Henne A, Daniel. R (2003) Construction and screening of metagenomic libraries derived from enrichment cultures: Generation of a gene bank for genes conferring alcohol oxidoreductase activity on Escherichia coli. Appl Environ Microbiol 69:1408–1416.CrossRefPubMedGoogle Scholar
  40. Lee CC, Kibblewhite-Accinelli RE, Wagschal K, Robertson GH, Wong DWS (2006a) Cloning and characterization of a cold-active xylanase enzyme from an environmental DNA library. Extremophiles 10:295–300.CrossRefPubMedGoogle Scholar
  41. Lee MH, Lee CH, Oh TK, Song JK, Yoon JH (2006b) Isolation and characterization of a novel lipase from a metagenomic library of tidal flat sediments: Evidence for a new family of bacterial lipases. Appl Environ Microbiol 72:7406–7409.CrossRefPubMedGoogle Scholar
  42. Liles MR, Manske BF, Bintrim SB, Handelsman J, Goodman. RM (2003) A census of rRNA genes and linked genomic sequences within a soil metagenomic library. Appl Environ Microbiol 69:2684–2691.CrossRefPubMedGoogle Scholar
  43. Lombardot T, Kottmann R, Pfeffer H, Richter M, Teeling H, Quast C, Glockner FO (2006)—database resources for marine ecological genomics. Nucl Acid Res 34:D390–D393.CrossRefGoogle Scholar
  44. Lopez-Garcia P, Brochier C, Moreira D, Rodriguez-Valera F (2004) Comparative analysis of a genome fragment of an uncultivated mesopelagic crenarchaeote reveals multiple horizontal gene transfers. Environ Microbiol 6:19–34.CrossRefPubMedGoogle Scholar
  45. Lorentz P, Eck J (2005) Metagenomics and industrial applications. Nat Rev Microbiol 3:510–516.CrossRefGoogle Scholar
  46. MacNeil IA, Tiong CL, C. M, August PR, Grossman TH, Loiacono KA, Lynch BA, Phillips T, Narula S, Sundaramoorthi R, Tyler A, Aldredge T, Long H, Gilman M, Holt D, Osburne MS (2001) Expression and isolation of antimicrobial small molecules from soil DNA libraries. J Mol Microbiol Biotechnol 3:301–308.PubMedGoogle Scholar
  47. Margesin R, Schinner F (eds) (1999) Biotechnological applications of cold-adapted organisms. Springer, Berlin.Google Scholar
  48. Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen YJ, Chen Z, Dewell SB, Du L, Fierro JM, Gomes XV, Godwin BC, He W, Helgesen S, Ho CH, Irzyk GP, Jando SC, Alenquer ML, Jarvie TP, Jirage KB, Kim JB, Knight JR, Lanza JR, Leamon JH, Lefkowitz SM, Lei M, Li J, Lohman KL, Lu H, Makhijani VB, McDade KE, McKenna MP, Myers EW, Nickerson E, Nobile JR, Plant R, Puc BP, Ronan MT, Roth GT, Sarkis GJ, Simons JF, Simpson JW, Srinivasan M, Tartaro KR, Tomasz A, Vogt KA, Volkmer GA, Wang SH, Wang Y, Weiner MP, Yu P, Begley RF, Rothberg JM (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 31:376–380.Google Scholar
  49. Markowitz VM, Ivanova N, Palaniappan K, Szeto E, Korzeniewski F, Lykidis A, Anderson I, Mavrommatis K, Kunin V, Garcia Martin H, Dubchak I, Hugenholtz P, Kyrpides NC (2006) An experimental metagenome data management and analysis system 10.1093/bioinformatics/btl217. Bioinformatics 22:e359–367.CrossRefPubMedGoogle Scholar
  50. Martin HG, Ivanova N, Kunin V, Warnecke F, Barry KW, McHardy AC, Yeates C, He SM, Salamov AA, Szeto E, Dalin E, Putnam NH, Shapiro HJ, Pangilinan JL, Rigoutsos I, Kyrpides NC, Blackall LL, McMahon KD, Hugenholtz P (2006) Metagenomic analysis of two enhanced biological phosphorus removal (EBPR) sludge communities. Nat Biotechnol 24:1263–1269.CrossRefGoogle Scholar
  51. Moreira D, Rodriguez-Valera F, Lopez-Garcia P (2004) Analysis of a genome fragment of a deep-sea uncultivated Group II euryarchaeote containing 16S rDNA, a spectinomycin-like operon and several energy metabolism genes. Environ Microbiol 6:959–969.CrossRefPubMedGoogle Scholar
  52. Moreira D, Rodriguez-Valera F, Lopez-Garcia P (2006) Metagenomic analysis of mesopelagic Antarctic plankton reveals a novel deltaproteobacterial group. Microbiology-SGM 152:505–517.CrossRefGoogle Scholar
  53. Noguchi H, Park J, Takagi T (2006) MetaGene: prokaryotic gene finding from environmental genome shotgun sequences. Nucl Acid Res 34:5623–5630.CrossRefGoogle Scholar
  54. Podar M, Reysenbach AL (2006) New opportunities revealed by biotechnological explorations of extremophiles. Curr Opin Biotechnol 17:250–255.CrossRefPubMedGoogle Scholar
  55. Quaiser A, Ochsenreiter T, Klenk H, Kletzin A, Treusch A, Meurer G, Eck J, Sensen C, Schleper C (2002) First insight into the genome of an uncultivated crenarchaeote from soil. Environ Microbiol 4:603–611.CrossRefPubMedGoogle Scholar
  56. Ram RJ, Verberkmoes NC, Thelen MP, Tyson GW, Baker BJ, Blake RC, Shah M, Hettich RL, F. BJ (2005) Community proteomics of a natural microbial biofilm. Science 308:1915–1920.CrossRefPubMedGoogle Scholar
  57. Rees H, Grant S, Jones B, Grant W, Heaply S (2003) Detecting cellulase and esterase enzyme activities encoded by novel genes present in environmental DNA libraries. Extremophiles 7:415–421.CrossRefPubMedGoogle Scholar
  58. Rhee JK, Ahn DG, Kim YG, Oh JW (2005) New thermophilic and thermostable esterase with sequence similarity to the hormone-sensitive lipase family, cloned from a metagenomic library. Appl Environ Microbiol 71:817–825.CrossRefPubMedGoogle Scholar
  59. Richardson TH, Tan X, Frey G, Callen W, Cabell M, Lam D, Macomber J, Short JM, Robertson DE, Miller C (2002) A novel, high performance enzyme for starch liquefaction. J Biol Chem 277:26501–26507.CrossRefPubMedGoogle Scholar
  60. Riesenfeld CS, Goodman RM, Handelsman J (2004a) Uncultured soil bacteria are a reservoir of new antibiotic resistance genes. Environ Microbiol 6:981–989.CrossRefPubMedGoogle Scholar
  61. Riesenfeld CS, Schloss PD, Handelsman J (2004b) Metagenomics: Genomic analysis of microbial communities. Annu Rev Genet 38:525–552.CrossRefPubMedGoogle Scholar
  62. Robe P, Nalin R, Capellano C, Vogel TM, Simonet P (2003) Extraction of DNA from soil. Eur J Soil Biol 39:183–190.CrossRefGoogle Scholar
  63. Robertson DE, Chaplin JA, DeSantis G, Podar M, Madden M, Chi E, Richardson T, Milan A, Miller M, Weiner DP, Wong K, McQuaid J, Farwell J, Preston LA, Tan X, Snead MA, Keller M, Mathur E, Kretz PL, Burk MJ, Short JM (2004) Exploring nitrilase sequence space for enantioselective catalysis. Appl Environ Microbiol 70:2429–2436.CrossRefPubMedGoogle Scholar
  64. Ronaghi M, Uhlen M, Nylen P (1998) A sequencing method based on real-time pyrophosphate. Science 281:363–365.CrossRefPubMedGoogle Scholar
  65. Rondon MR, August PR, Bettermann AD, Brady SF, Grossman TH, Liles MR, Loiacono KA, Lynch BA, MacNeil IA, Minor C, Tiong CL, Gilman M, Osburne MS, Clardy J, Handelsman J, Goodman RM (2000) Cloning the soil metagenome: a strategy for accessing the genetic and functional diversity of uncultured microorganisms. Appl Environ Microbiol 66:2541–2547.CrossRefPubMedGoogle Scholar
  66. Schleper C, Swanson RV, Mathur EJ, DeLong EF (1997) Characterization of a DNA polymerase from the uncultivated psychrophilic archaeon Cenarchaeum symbiosum. J Bacteriol 179:7803–7811.PubMedGoogle Scholar
  67. Schloss PD, Handelsman J (2003) Biotechnological prospects from metagenomics. Curr Opin Biotechnol 14:303–310.CrossRefPubMedGoogle Scholar
  68. Short JM (1997) Recombinant approaches for accessing biodiversity. Nat Biotechnol 15:1322–1323.CrossRefPubMedGoogle Scholar
  69. Siddiqui KS, Cavicchioli R (2006) Cold-adapted enzymes. Annu Rev Biochem 75:403–433.CrossRefPubMedGoogle Scholar
  70. Sjöling S, Stafford W, Cowan DA (2006) Soil metagenomics: Exploring and exploiting the soil microbial gene pool. In: van Elsas JD, Jansson J, Trevors JT (eds) Modern soil microbiology, 2nd edition. CRC Press, USA, pp 409–434.Google Scholar
  71. Sogin ML, Morrison HG, Huber JA, Welch DM, Huse SM, Neal PR, Arrieta JM, Herndl GJ (2006) Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc Natl Acad Sci USA 103:12115–12120.CrossRefPubMedGoogle Scholar
  72. Song JS, Jeon JH, Lee JH, Jeong SH, Jeong BC, Kim SJ, Lee SH (2005) Molecular characterization of TEM-type beta-lactamases identified in cold-seep sediments of Edison seamount (south of Lihir Island, Papua New Guinea). J Microbiol 43:172–178.PubMedGoogle Scholar
  73. Stein JL, Marsh TL, Wu KY, Shizuya H, DeLong EF (1996) Characterization of uncultivated prokaryotes: isolation and analysis of a 40-kilobase-pair genome fragment from a planktonic marine Archaeon. J Bacteriol 178:591–599.PubMedGoogle Scholar
  74. Strous M, Pelletier E, Mangenot S, Rattel T, Lehner A, Taylor MW, Horn M, Daims H, Bartol-Mavel D, Wickner P, Barbe V, Fonknechten N, Vallenet D, Segurens B, Schenowitz-Truong C, Médigue C, Collingro A, Snel B, Dutilh BE, Op den Camp JM, van der Drift C, Cirpus I, van de Pas-Schoonen KT, Harhangi HR, Niftrik L, Schmid M, Keltjens J, van de Vossenberg J, Kartal B, Meier H, Frishman D, Huynen MA, Mewes H-W, Weissenbach J, Jetten M, Wagner M, Le Paslier D (2006) Deciphering the evolution and metabolism of an anammox bacterium from a community genome. Nature 440:790–794.CrossRefPubMedGoogle Scholar
  75. Teeling H, Waldmann J, Lombardot T, Bauer M, Glockner FO (2004) TETRA: a web-service and a stand-alone program for the analysis and comparison of tetranucleotide usage patterns in DNA sequences. BMC Bioinformatics 5.Google Scholar
  76. Tringe SG, von Mering C, Kobayashi A, Salamov AA, Chen K, Chang HW, Podar M, Short JM, Mathur EJ, Detter JC, Bork P, Hugenholtz P, Rubin EM (2005) Comparative Metagenomics of Microbial Communities. Science 308:554–557.CrossRefPubMedGoogle Scholar
  77. Tyson GW, Chapman J, Hugenholtz P, Allen EE, Ram RJ, Richadson PM, Solovyev VV, Rubin EM, Rokhsar DS, Banfield JF (2004) Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428:37–43.CrossRefPubMedGoogle Scholar
  78. Uchiyama T, Abe T, Ikemura T, Watanabe K (2005) Substrate-induced gene-expression screening of environmental metagenome libraries for isolation of catabolic genes. Nat Biotechnol 23:88–93.CrossRefPubMedGoogle Scholar
  79. Urbach E, Vergin KL, Giovannoni SJ (1999) Immunochemical detection and isolation of DNA from metabolically active bacteria. Appl Environ Microbiol 65:1207–1213.PubMedGoogle Scholar
  80. Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D, Eisen JA, Wu D, Paulsen I, Nelson KE, Nelson W, Fouts DE, Levy S, Knap AH, Lomas MW, Nealson K, White O, Peterson J, Hoffman J, Parsons R, Baden-Tillson H, Pfannkoch C, Rogers Y-H, Smith HO (2004) Environmental genome shotgun sequencing of the Sargasso Sea. Science 304:66–74.CrossRefPubMedGoogle Scholar
  81. Voget S, Leggewie C, Uesbeck A, Raasch C, Jaeger KE, Streit WR (2003) Prospecting for novel biocatalysts in a soil metagenome. Appl Environ Microbiol 69:6235–6242.CrossRefPubMedGoogle Scholar
  82. Wellington EMH, Berry A, Krsek M (2003) Resolving funtional diversity in relation to microbial community structure in soil: exploiting genomics and stable isotope probing. Curr Opin Microbiol 6:295–301.CrossRefPubMedGoogle Scholar
  83. Whitaker RJ, Banfield JF (2006) Population genomics in natural microbial communities. Trends Ecol Evol 21:508–516.CrossRefPubMedGoogle Scholar
  84. Whitley AS, Manefield M, Turner SL, Bailey MJ (2005) Lessons from the genomes: microbial ecology and genomics. In: Osburne MS, Smith CJ (eds) Molecular microbial ecology. Taylor and Francis Group, NY, pp 241–259.Google Scholar
  85. Wilson MS, Bakermans C, Madsen EL (1999) In situ, real-time catabolic gene expression: Extraction and characterization of naphthalene dioxygenase mRNA transcripts from groundwater. Appl Environ Microbiol 65:80–87.PubMedGoogle Scholar
  86. Woyke T, Teeling H, Ivanova NN, Huntemann M, Richter M, Gloeckner FO, Boffelli D, Anderson IJ, Barry KW, Shapiro HJ, Szeto E, Kyrpides NC, Mussmann M, Amann R, Bergin C, Ruehland C, Rubin EM, Dubilier N (2006) Symbiosis insights through metagenomic analysis of a microbial consortium. Nature 443:950–955.CrossRefPubMedGoogle Scholar
  87. Yokouchi H, Fukuoka Y, Mukoyama D, Calugay R, Takeyama H, Matsunaga T (2006) Whole-metagenome amplification of a microbial community associated with scleractinian coral by multiple displacement amplification using phi 29 polymerase. Environ Microbiol 8:1155–1163.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Sara Sjöling
    • 1
  • Don A. Cowan
    • 2
  1. 1.School of Life SciencesUniversity College SödertörnHuddingeSweden
  2. 2.Department of BiotechnologyUniversity of the Western CapeBellville, Cape TownSouth Africa

Personalised recommendations