Criticality and Correlations in Cold Atomic Gases

  • Michael Köhl
  • Tobias Donner
  • Stephan Ritter
  • Thomas Bourdel
  • Anton Öttl
  • Ferdinand Brennecke
  • Tilman Esslinger
Part of the Advances in Solid State Physics book series (ASSP, volume 47)


We study the phase transition of Bose—Einstein condensation in a dilute atomic gas very close to the critical temperature. The critical regime we enter is governed by fluctuations extending far beyond the length scale of thermal de-Broglie waves. Using matter-wave interference we measure the correlation length of these critical fluctuations as a function of temperature. From this we determine the critical exponent of the correlation length for a trapped, weakly interacting Bose gas to be v = 0.67 ± 0.13.


Critical Temperature Correlation Length Critical Exponent Atomic Beam Einstein Condensation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    S. N. Bose: Plancks Gesetz und Lichtquantenhypothese, Z. Phys. 26, 178 (1924)CrossRefADSGoogle Scholar
  2. [2]
    A. Einstein: Quantentheorie des einatomigen idealen Gases. Zweite Abhandlung, Sitzungsberichte der Preussischen Akademie der Wissenschaften 1, 3 (1925)MathSciNetGoogle Scholar
  3. [3]
    F. London: On the Bose-Einstein condensation, Phys. Rev. 54, 947 (1938)MATHCrossRefADSGoogle Scholar
  4. [4]
    M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, E. A. Cornell: Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor, Science 269, 198 (1995)CrossRefADSGoogle Scholar
  5. [5]
    C. Raman, M. Köhl, R. Onofrio, D. S. Durfee, C. E. Kuklewicz, Z. Hadzibabic, W. Ketterle: Evidence for a Critical Velocity in a Bose-Einstein Condensed Gas, Phys. Rev. Lett. 83, 2502 (1999)CrossRefADSGoogle Scholar
  6. [6]
    M. R. Matthews, B. P. Anderson, P. C. Haljan, D. S. Hall, C. E. Wieman, E. A. Cornell: Vortices in a Bose-Einstein Condensate, Phys. Rev. Lett. 83, 2498 (1999)CrossRefADSGoogle Scholar
  7. [7]
    K. W. Madison, F. Chevy, W. Wohlleben, J. Dalibard: Vortex Formation in a Stirred Bose-Einstein Condensate, Phys. Rev. Lett. 84, 806 (2000)CrossRefADSGoogle Scholar
  8. [8]
    M. P. A. Fisher, P. B. Weichman, G. Grinstein, D. S. Fisher: Boson Localization and the Superfluid-Insulator Transition, Phys. Rev. B 40, 546 (1989)CrossRefADSGoogle Scholar
  9. [9]
    D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner, P. Zoller: Cold Bosonic Atoms in Optical Lattices, Physical Review Letters 81, 3108 (1998)CrossRefADSGoogle Scholar
  10. [10]
    T. Stöferle, H. Moritz, C. Schori, M. Köhl, T. Esslinger: Transition from a Strongly Interacting 1D Superfluid to a Mott Insulator, Phys. Rev. Lett. 92, 130403 (2004)CrossRefADSGoogle Scholar
  11. [11]
    B. Paredes, A. Widera, V. Murg, O. Mandel, S. Fölling, I. Cirac, G. Shlyapnikov, T. W. Hänsch, I. Bloch: Tonks-Girardeau Gas of Ultracold Atoms in an Optical Lattice, Nature (London) 429, 277 (2004)CrossRefADSGoogle Scholar
  12. [12]
    T. Kinoshita, T. Wenger, D. S. Weiss: Observation of a One-Dimensional Tonks-Girardeau Gas, Science 305, 1125 (2004)CrossRefADSGoogle Scholar
  13. [13]
    M. Köhl, H. Moritz, T. Stöferle, C. Schori, T. Esslinger: Superfluid to Mott Insulator Transition in One, Two, and Three Dimensions, Journal of Low Temperature Physics 138, 635 (2005)CrossRefADSGoogle Scholar
  14. [14]
    Z. Hadzibabic, P. Krüger, M. Cheneau, B. Battelier, J. Dalibard: Berezinskii-Kosterlitz-Thouless Crossover in a Trapped Atomic Gas, Nature (London) 441, 1118 (2006)CrossRefADSGoogle Scholar
  15. [15]
    I. B. Spielman, W. D. Phillips, J. V. Porto: Mott-insulator Transition in a Two-Dimensional Atomic Bose Gas, Physical Review Letters 98, 080404 (2007)CrossRefADSGoogle Scholar
  16. [16]
    T. Donner, S. Ritter, T. Bourdel, A. Öttl, M. Köhl, T. Esslinger: Critical Behavior of a Trapped Interacting Bose Gas, Science 315, 1556 (2007)CrossRefADSGoogle Scholar
  17. [17]
    Q. Niu, I. Carusotto, A. B. Kuklov: Imaging of Critical Correlations in Optical Lattices and Atomic Traps, Phys. Rev. A 73, 053604 (2006)CrossRefADSGoogle Scholar
  18. [18]
    O. Penrose, L. Onsager: Bose-Einstein Condensation and Liquid Helium, Phys. Rev. 104, 576 (1956)MATHCrossRefADSGoogle Scholar
  19. [19]
    K. Huang: Statistical Mechanics (Wiley, New York 1987)MATHGoogle Scholar
  20. [20]
    L. Onsager: Crystal Statistics. I. A Two-Dimensional Model with an Order-Disorder Transition, Phys. Rev. 65, 117 (1944)MATHCrossRefADSMathSciNetGoogle Scholar
  21. [21]
    J. Zinn Justin: Quantum Field Theory and Critical Phenomena (Oxford University Press 1996)Google Scholar
  22. [22]
    S. Giorgini, L. P. Pitaevskii, S. Stringari: Condensate Fraction and Critical Temperature of a Trapped Interacting Bose Gas, Phys. Rev. A 54, R4633 (1996)CrossRefADSGoogle Scholar
  23. [23]
    K. Damle, T. Senthil, S. N. Majumdar, S. Sachdev: Phase Transition of a Bose Gas in a Harmonic Potential, Europhys. Lett 36, 7 (1996)CrossRefADSGoogle Scholar
  24. [24]
    G. Baym, J.-P. Blaizot, M. Holzmann, F. Laloë, D. Vautherin: The Transition Temperature of the Dilute Interacting Bose Gas, Phys. Rev. Lett. 83, 1703 (1999)CrossRefADSGoogle Scholar
  25. [25]
    G. Baym, J.-P. Blaizot, J. Zinn-Justin: The Transition Temperature of the Dilute Interacting Bose Gas for n Internal States, Europhysics Letters (EPL) 49, 150 (2000)CrossRefADSGoogle Scholar
  26. [26]
    P. Arnold, G. Moore: BEC Transition Temperature of a Dilute Homogeneous Imperfect Bose Gas, Phys. Rev. Lett. 87, 120401 (2001)CrossRefADSGoogle Scholar
  27. [27]
    V. A. Kashurnikov, N. V. Prokof’ev, B. V. Svistunov: Critical Temperature Shift in Weakly Interacting Bose Gas, Phys. Rev. Lett. 87, 120402 (2001)CrossRefADSGoogle Scholar
  28. [28]
    N. Prokof’ev, O. Ruebenacker, B. Svistunov: Weakly Interacting Bose Gas in the Vicinity of the Normal-fluid-Superfluid Transition, Phys. Rev. A 69, 053625 (2004)CrossRefADSGoogle Scholar
  29. [29]
    F. Gerbier, J. H. Thywissen, S. Richard, M. Hugbart, P. Bouyer, A. Aspect: Critical Temperature of a Trapped, Weakly Interacting Bose Gas, Phys. Rev. Lett. 92, 030405 (2004)CrossRefADSGoogle Scholar
  30. [30]
    T. Esslinger, I. Bloch, T. W. Hänsch: Bose-Einstein Condensation in a Quadrupole-Ioffe-Configuration Trap, Phys. Rev. A 58, 2664(R) (1998)Google Scholar
  31. [31]
    A. Öttl, S. Ritter, M. Köhl, T. Esslinger: Hybrid apparatus for Bose-Einstein Condensation and Cavity Quantum Electrodynamics: Single Atom Detection in Quantum Degenerate Gases, Rev. Sci. Instrum. 77, 063118 (2006)CrossRefADSGoogle Scholar
  32. [32]
    I. Bloch, T. W. Hänsch, T. Esslinger: Measurement of the Spatial Coherence of a Trapped Bose Gas at the Phasetransition, Nature (London) 403, 166 (2000)CrossRefADSGoogle Scholar
  33. [33]
    T. Bourdel, T. Donner, S. Ritter, A. Öttl, M. Köhl, T. Esslinger: Cavity QED Detection of Interfering Matter Waves, Phys. Rev. A 73, 043602 (2006)CrossRefADSGoogle Scholar
  34. [34]
    S. Ritter, A. Öttl, T. Donner, T. Bourdel, M. Köhl, T. Esslinger: Observing the Formation of Long-Range Order during Bose-Einstein Condensation, Phys. Rev. Lett. 98, 090402 (2007)CrossRefADSGoogle Scholar
  35. [35]
    R. Gati, B. Hemmerling, J. Fölling, M. Albiez, M. K. Oberthaler: Noise Thermometry with Two Weakly Coupled Bose-Einstein Condensates, Phys. Rev. Lett. 96, 130404 (2006)CrossRefADSGoogle Scholar
  36. [36]
    P. Arnold, B. Tomasik: T c for Trapped Dilute Bose Gases: A Second-order Result, Phys. Rev. A 64, 053609 (2001)CrossRefADSGoogle Scholar
  37. [37]
    J. A. Lipa, J. A. Nissen, D. A. Stricker, D. R. Swanson, T. C. P. Chui: Specific Heat of Liquid Helium in Zero Gravity Very Near the Lambda Point, Phys. Rev. B 68, 174518 (2003)CrossRefADSGoogle Scholar
  38. [38]
    H. Kleinert: Critical Exponents from Seven-loop Strong-coupling ϕ4 Theory in Three Dimensions, Phys. Rev. D 60, 085001 (1999)CrossRefADSMathSciNetGoogle Scholar
  39. [39]
    M. Campostrini, M. Hasenbusch, A. Pelissetto, P. Rossi, E. Vicari: Critical Behavior of the Three-dimensional XY Universality Class, Phys. Rev. B 63, 214503 (2001)CrossRefADSGoogle Scholar
  40. [40]
    E. Burovski, J. Machta, N. Prokof’ev, B. Svistunov: High-precision measurement of the Thermal Exponent for the Three-dimensional XY Universality Class, Phys. Rev. B 74, 132502 (2006)CrossRefADSGoogle Scholar
  41. [41]
    L. S. Goldner, N. Mulders, G. Ahlers: Second Sound Very Near T λ, J. Low Temp. Phys. 93, 131 (1993)CrossRefADSGoogle Scholar
  42. [42]
    M. J. Adriaans, D. R. Swanson, J. A. Lipa: The velocity of Second Sound Near the Lambda Transition in Superfluid 4He, Physica B 194, 733 (1993)CrossRefADSGoogle Scholar
  43. [43]
    B. D. Josephson: Relation between the Superfluid Density and Order Parameter for Superfluid He Near Tc, Phys. Lett. 21, 608 (1966)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Michael Köhl
    • 1
    • 2
  • Tobias Donner
    • 1
  • Stephan Ritter
    • 1
  • Thomas Bourdel
    • 1
    • 3
  • Anton Öttl
    • 1
    • 4
  • Ferdinand Brennecke
    • 1
  • Tilman Esslinger
    • 1
  1. 1.Institute for Quantum ElectronicsETH ZürichZürichSwitzerland
  2. 2.Department of PhysicsUniversity of CambridgeCambridgeUK
  3. 3.Laboratoire Charles Fabry de l’institut d’Optique, CNRSUniv Paris-SudPalaiseau cedexFrance
  4. 4.Department of PhysicsUniversity of CaliforniaBerkeleyUSA

Personalised recommendations