Criticality and Correlations in Cold Atomic Gases

  • Michael Köhl
  • Tobias Donner
  • Stephan Ritter
  • Thomas Bourdel
  • Anton Öttl
  • Ferdinand Brennecke
  • Tilman Esslinger
Part of the Advances in Solid State Physics book series (ASSP, volume 47)


We study the phase transition of Bose—Einstein condensation in a dilute atomic gas very close to the critical temperature. The critical regime we enter is governed by fluctuations extending far beyond the length scale of thermal de-Broglie waves. Using matter-wave interference we measure the correlation length of these critical fluctuations as a function of temperature. From this we determine the critical exponent of the correlation length for a trapped, weakly interacting Bose gas to be v = 0.67 ± 0.13.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    S. N. Bose: Plancks Gesetz und Lichtquantenhypothese, Z. Phys. 26, 178 (1924)CrossRefADSGoogle Scholar
  2. [2]
    A. Einstein: Quantentheorie des einatomigen idealen Gases. Zweite Abhandlung, Sitzungsberichte der Preussischen Akademie der Wissenschaften 1, 3 (1925)MathSciNetGoogle Scholar
  3. [3]
    F. London: On the Bose-Einstein condensation, Phys. Rev. 54, 947 (1938)MATHCrossRefADSGoogle Scholar
  4. [4]
    M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, E. A. Cornell: Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor, Science 269, 198 (1995)CrossRefADSGoogle Scholar
  5. [5]
    C. Raman, M. Köhl, R. Onofrio, D. S. Durfee, C. E. Kuklewicz, Z. Hadzibabic, W. Ketterle: Evidence for a Critical Velocity in a Bose-Einstein Condensed Gas, Phys. Rev. Lett. 83, 2502 (1999)CrossRefADSGoogle Scholar
  6. [6]
    M. R. Matthews, B. P. Anderson, P. C. Haljan, D. S. Hall, C. E. Wieman, E. A. Cornell: Vortices in a Bose-Einstein Condensate, Phys. Rev. Lett. 83, 2498 (1999)CrossRefADSGoogle Scholar
  7. [7]
    K. W. Madison, F. Chevy, W. Wohlleben, J. Dalibard: Vortex Formation in a Stirred Bose-Einstein Condensate, Phys. Rev. Lett. 84, 806 (2000)CrossRefADSGoogle Scholar
  8. [8]
    M. P. A. Fisher, P. B. Weichman, G. Grinstein, D. S. Fisher: Boson Localization and the Superfluid-Insulator Transition, Phys. Rev. B 40, 546 (1989)CrossRefADSGoogle Scholar
  9. [9]
    D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner, P. Zoller: Cold Bosonic Atoms in Optical Lattices, Physical Review Letters 81, 3108 (1998)CrossRefADSGoogle Scholar
  10. [10]
    T. Stöferle, H. Moritz, C. Schori, M. Köhl, T. Esslinger: Transition from a Strongly Interacting 1D Superfluid to a Mott Insulator, Phys. Rev. Lett. 92, 130403 (2004)CrossRefADSGoogle Scholar
  11. [11]
    B. Paredes, A. Widera, V. Murg, O. Mandel, S. Fölling, I. Cirac, G. Shlyapnikov, T. W. Hänsch, I. Bloch: Tonks-Girardeau Gas of Ultracold Atoms in an Optical Lattice, Nature (London) 429, 277 (2004)CrossRefADSGoogle Scholar
  12. [12]
    T. Kinoshita, T. Wenger, D. S. Weiss: Observation of a One-Dimensional Tonks-Girardeau Gas, Science 305, 1125 (2004)CrossRefADSGoogle Scholar
  13. [13]
    M. Köhl, H. Moritz, T. Stöferle, C. Schori, T. Esslinger: Superfluid to Mott Insulator Transition in One, Two, and Three Dimensions, Journal of Low Temperature Physics 138, 635 (2005)CrossRefADSGoogle Scholar
  14. [14]
    Z. Hadzibabic, P. Krüger, M. Cheneau, B. Battelier, J. Dalibard: Berezinskii-Kosterlitz-Thouless Crossover in a Trapped Atomic Gas, Nature (London) 441, 1118 (2006)CrossRefADSGoogle Scholar
  15. [15]
    I. B. Spielman, W. D. Phillips, J. V. Porto: Mott-insulator Transition in a Two-Dimensional Atomic Bose Gas, Physical Review Letters 98, 080404 (2007)CrossRefADSGoogle Scholar
  16. [16]
    T. Donner, S. Ritter, T. Bourdel, A. Öttl, M. Köhl, T. Esslinger: Critical Behavior of a Trapped Interacting Bose Gas, Science 315, 1556 (2007)CrossRefADSGoogle Scholar
  17. [17]
    Q. Niu, I. Carusotto, A. B. Kuklov: Imaging of Critical Correlations in Optical Lattices and Atomic Traps, Phys. Rev. A 73, 053604 (2006)CrossRefADSGoogle Scholar
  18. [18]
    O. Penrose, L. Onsager: Bose-Einstein Condensation and Liquid Helium, Phys. Rev. 104, 576 (1956)MATHCrossRefADSGoogle Scholar
  19. [19]
    K. Huang: Statistical Mechanics (Wiley, New York 1987)MATHGoogle Scholar
  20. [20]
    L. Onsager: Crystal Statistics. I. A Two-Dimensional Model with an Order-Disorder Transition, Phys. Rev. 65, 117 (1944)MATHCrossRefADSMathSciNetGoogle Scholar
  21. [21]
    J. Zinn Justin: Quantum Field Theory and Critical Phenomena (Oxford University Press 1996)Google Scholar
  22. [22]
    S. Giorgini, L. P. Pitaevskii, S. Stringari: Condensate Fraction and Critical Temperature of a Trapped Interacting Bose Gas, Phys. Rev. A 54, R4633 (1996)CrossRefADSGoogle Scholar
  23. [23]
    K. Damle, T. Senthil, S. N. Majumdar, S. Sachdev: Phase Transition of a Bose Gas in a Harmonic Potential, Europhys. Lett 36, 7 (1996)CrossRefADSGoogle Scholar
  24. [24]
    G. Baym, J.-P. Blaizot, M. Holzmann, F. Laloë, D. Vautherin: The Transition Temperature of the Dilute Interacting Bose Gas, Phys. Rev. Lett. 83, 1703 (1999)CrossRefADSGoogle Scholar
  25. [25]
    G. Baym, J.-P. Blaizot, J. Zinn-Justin: The Transition Temperature of the Dilute Interacting Bose Gas for n Internal States, Europhysics Letters (EPL) 49, 150 (2000)CrossRefADSGoogle Scholar
  26. [26]
    P. Arnold, G. Moore: BEC Transition Temperature of a Dilute Homogeneous Imperfect Bose Gas, Phys. Rev. Lett. 87, 120401 (2001)CrossRefADSGoogle Scholar
  27. [27]
    V. A. Kashurnikov, N. V. Prokof’ev, B. V. Svistunov: Critical Temperature Shift in Weakly Interacting Bose Gas, Phys. Rev. Lett. 87, 120402 (2001)CrossRefADSGoogle Scholar
  28. [28]
    N. Prokof’ev, O. Ruebenacker, B. Svistunov: Weakly Interacting Bose Gas in the Vicinity of the Normal-fluid-Superfluid Transition, Phys. Rev. A 69, 053625 (2004)CrossRefADSGoogle Scholar
  29. [29]
    F. Gerbier, J. H. Thywissen, S. Richard, M. Hugbart, P. Bouyer, A. Aspect: Critical Temperature of a Trapped, Weakly Interacting Bose Gas, Phys. Rev. Lett. 92, 030405 (2004)CrossRefADSGoogle Scholar
  30. [30]
    T. Esslinger, I. Bloch, T. W. Hänsch: Bose-Einstein Condensation in a Quadrupole-Ioffe-Configuration Trap, Phys. Rev. A 58, 2664(R) (1998)Google Scholar
  31. [31]
    A. Öttl, S. Ritter, M. Köhl, T. Esslinger: Hybrid apparatus for Bose-Einstein Condensation and Cavity Quantum Electrodynamics: Single Atom Detection in Quantum Degenerate Gases, Rev. Sci. Instrum. 77, 063118 (2006)CrossRefADSGoogle Scholar
  32. [32]
    I. Bloch, T. W. Hänsch, T. Esslinger: Measurement of the Spatial Coherence of a Trapped Bose Gas at the Phasetransition, Nature (London) 403, 166 (2000)CrossRefADSGoogle Scholar
  33. [33]
    T. Bourdel, T. Donner, S. Ritter, A. Öttl, M. Köhl, T. Esslinger: Cavity QED Detection of Interfering Matter Waves, Phys. Rev. A 73, 043602 (2006)CrossRefADSGoogle Scholar
  34. [34]
    S. Ritter, A. Öttl, T. Donner, T. Bourdel, M. Köhl, T. Esslinger: Observing the Formation of Long-Range Order during Bose-Einstein Condensation, Phys. Rev. Lett. 98, 090402 (2007)CrossRefADSGoogle Scholar
  35. [35]
    R. Gati, B. Hemmerling, J. Fölling, M. Albiez, M. K. Oberthaler: Noise Thermometry with Two Weakly Coupled Bose-Einstein Condensates, Phys. Rev. Lett. 96, 130404 (2006)CrossRefADSGoogle Scholar
  36. [36]
    P. Arnold, B. Tomasik: T c for Trapped Dilute Bose Gases: A Second-order Result, Phys. Rev. A 64, 053609 (2001)CrossRefADSGoogle Scholar
  37. [37]
    J. A. Lipa, J. A. Nissen, D. A. Stricker, D. R. Swanson, T. C. P. Chui: Specific Heat of Liquid Helium in Zero Gravity Very Near the Lambda Point, Phys. Rev. B 68, 174518 (2003)CrossRefADSGoogle Scholar
  38. [38]
    H. Kleinert: Critical Exponents from Seven-loop Strong-coupling ϕ4 Theory in Three Dimensions, Phys. Rev. D 60, 085001 (1999)CrossRefADSMathSciNetGoogle Scholar
  39. [39]
    M. Campostrini, M. Hasenbusch, A. Pelissetto, P. Rossi, E. Vicari: Critical Behavior of the Three-dimensional XY Universality Class, Phys. Rev. B 63, 214503 (2001)CrossRefADSGoogle Scholar
  40. [40]
    E. Burovski, J. Machta, N. Prokof’ev, B. Svistunov: High-precision measurement of the Thermal Exponent for the Three-dimensional XY Universality Class, Phys. Rev. B 74, 132502 (2006)CrossRefADSGoogle Scholar
  41. [41]
    L. S. Goldner, N. Mulders, G. Ahlers: Second Sound Very Near T λ, J. Low Temp. Phys. 93, 131 (1993)CrossRefADSGoogle Scholar
  42. [42]
    M. J. Adriaans, D. R. Swanson, J. A. Lipa: The velocity of Second Sound Near the Lambda Transition in Superfluid 4He, Physica B 194, 733 (1993)CrossRefADSGoogle Scholar
  43. [43]
    B. D. Josephson: Relation between the Superfluid Density and Order Parameter for Superfluid He Near Tc, Phys. Lett. 21, 608 (1966)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Michael Köhl
    • 1
    • 2
  • Tobias Donner
    • 1
  • Stephan Ritter
    • 1
  • Thomas Bourdel
    • 1
    • 3
  • Anton Öttl
    • 1
    • 4
  • Ferdinand Brennecke
    • 1
  • Tilman Esslinger
    • 1
  1. 1.Institute for Quantum ElectronicsETH ZürichZürichSwitzerland
  2. 2.Department of PhysicsUniversity of CambridgeCambridgeUK
  3. 3.Laboratoire Charles Fabry de l’institut d’Optique, CNRSUniv Paris-SudPalaiseau cedexFrance
  4. 4.Department of PhysicsUniversity of CaliforniaBerkeleyUSA

Personalised recommendations