Electronic Correlations in Electron Transfer Systems

  • Ralf Bulla
  • Sabine Tornow
  • Frithjof Anders
Part of the Advances in Solid State Physics book series (ASSP, volume 47)

Abstract

Electron transfer processes play a central role in many chemical and biological systems. Already the transfer of a single electron from the donor to the acceptor can be viewed as a complicated many-body problem, due to the coupling of the electron to the infinitely many environmental degrees of freedom, realized by density fluctuations of the solvent or molecular vibrations of the protein matrix. We focus on the quantum mechanical modelling of two-electron transfer processes whose dynamics is governed by the Coulomb interaction between the electrons as well as the environmental degrees of freedoms represented by a bosonic bath. We identify the regime of parameters in which concerted transfer of the two electrons occurs and discuss the influence of the Coulomb repulsion and the coupling strength to the environment on the electron transfer rate. Calculations are performed using the non-perturbative numerical renormalization group approach for both equilibrium and non-equilibrium properties.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. Jortner, M. Bixon: Electron Transfer — from isolated Molecules to Biomolecules, Adv. in Chem. Phys. 106/107 (1999)Google Scholar
  2. [2]
    V. May, O. Kühn: Charge and Energy Transfer Dynamics in Molecular Systems, (Wiley-VCH, Weinheim 2004)Google Scholar
  3. [3]
    C. Wan, T. Fiebig, O. Schiemann, J. K. Barton, A. H. Zewail: Proc. Natl. Acad. Sci. U.S.A. 97, 14052 (2000)CrossRefADSGoogle Scholar
  4. [4]
    D. DeVault: Quantum-mechanical tunneling in biological systems, (Cambridge University Press, Cambridge 1981)Google Scholar
  5. [5]
    R. A. Marcus: J. Chem. Phys. 24, 966 (1956); Rev. Mod. Phys. 65, 599 (1999)CrossRefADSGoogle Scholar
  6. [6]
    A. J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. A. Fisher, A. Garg, W. Zwerger: Rev. Mod. Phys. 59,1 (1987)Google Scholar
  7. [7]
    F. B. Anders, A. Schiller: Phys. Rev. Lett. 95, 196801 (2005)CrossRefADSGoogle Scholar
  8. [8]
    F. B. Anders, A. Schiller: Phys. Rev. B 74, 245113 (2006)CrossRefADSGoogle Scholar
  9. [9]
    R. Bulla, H.-J. Lee, N.-H. Tong, M. Vojta: Phys. Rev. B 71, 045122 (2005)CrossRefADSGoogle Scholar
  10. [10]
    F. B. Anders, R. Bulla, M. Vojta: preprint cond-mat/0607443 (2006)Google Scholar
  11. [11]
    S. Tornow, N.-H. Tong, R. Bulla: Europhys. Lett. 73, 913 (2006)CrossRefADSGoogle Scholar
  12. [12]
    L. Mühlbacher, J. Ankerhold, A. Komnik: Phys. Rev. Lett. 95, 220404 (2005)CrossRefGoogle Scholar
  13. [13]
    L. D. Zusman, D. V. Beratan: J. Chem. Phys. 105, 165 (1996)CrossRefADSGoogle Scholar
  14. [14]
    K. R. Hoke, N. Cobb, F. A. Armstrong, R. Hille: Biochemistry 43, 1667 (2004)CrossRefGoogle Scholar
  15. [15]
    A. Naqui, B. Chance, E. Cadenas: Ann. Rev. Biochem. 55, 137 (1986)CrossRefGoogle Scholar
  16. [16]
    K. G. Wilson: Rev. Mod. Phys. 47, 773 (1975)CrossRefADSGoogle Scholar
  17. [17]
    R. Bulla, T. Costi, Th. Pruschke: preprint cond-mat/0701105 (2007)Google Scholar
  18. [18]
    R. Bulla, N.-H. Tong, M. Vojta: Phys. Rev. Lett. 91, 170601 (2003)CrossRefADSGoogle Scholar
  19. [19]
    D. Xu, K. Schulten: Chem. Phys. 182, 91 (1994).CrossRefADSGoogle Scholar
  20. [20]
    S. Tornow, R. Bulla, F. Anders, A. Nitzan: in preparationGoogle Scholar
  21. [21]
    H.-A. Wagenknecht: Charge Transfer in DNA — From Mechanism to Application, (Wiley-VCH, Weinheim 2005)CrossRefGoogle Scholar
  22. [22]
    G. Pratviel, B. Meunier: Chem. Eur. J. 12, 6018 (2006)CrossRefGoogle Scholar
  23. [23]
    E. B. Starikov: Philos. Mag. Lett. 83, 699 (2003)CrossRefADSGoogle Scholar
  24. [24]
    S. Tornow, R. Bulla, F. Anders, E. Starikov: in preparationGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Ralf Bulla
    • 1
  • Sabine Tornow
    • 1
  • Frithjof Anders
    • 2
  1. 1.Theoretische Physik III, Elektronische Korrelationen und Magnetismus Institut für PhysikUniversität AugsburgAugsburgGermany
  2. 2.Fachbereich PhysikUniversität BremenBremenGermany

Personalised recommendations