Wide-Bandgap Quantum Dot Based Microcavity VCSEL Structures

  • K. Sebald
  • H. Lohmeyer
  • J. Gutowski
  • C. Kruse
  • T. Yamaguchi
  • A. Gust
  • D. Hommel
  • J. Wiersig
  • N. Baer
  • F. Jahnke
Part of the Advances in Solid State Physics book series (ASSP, volume 47)


In this contribution we report on the optical properties of planar and pillar structured GaN- and ZnSe-based monolithic microcavities. These structures reveal three-dimensional confined optical modes with high quality factors and potentially small mode volumes especially for the ZnSe-based samples. The measurements are completed with theoretical calculations. Furthermore, the optical emission properties of CdSe quantum dots embedded into microcavities have been studied. The Purcell effect demonstrated by means of the pronounced enhancement of the spontaneous emission rate of quantum dots coupled to the discrete optical modes of the cavities. This enhancement depends systematically on the pillar diameter and thus on the Purcell factor of the individual pillars.


Fundamental Mode Spectral Position Spontaneous Emission Rate Purcell Factor Green Spectral Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    K. J. Vahala, Nature (London) 424, 839 (2003).CrossRefADSGoogle Scholar
  2. [2]
    J.M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, Phys. Rev. Lett. 81, 1110 (1998).CrossRefADSGoogle Scholar
  3. [3]
    For a review see J. M. Gérard, Top. Appl. Phys. 90, 269 (2003).Google Scholar
  4. [4]
    E. Moreau, I. Robert, J.M. Gérard, I. Abram, L. Manin, and V. Thierry-Mieg, Appl. Phys. Lett. 79, 2865 (2001).CrossRefADSGoogle Scholar
  5. [5]
    M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, Phys. Rev. Lett. 89, 233602 (2002).CrossRefADSGoogle Scholar
  6. [6]
    J.P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, Nature (London) 432, 197 (2004).CrossRefADSGoogle Scholar
  7. [7]
    M. Obert, B. Wild, G. Bacher, A. Forchel, R. André, and L. S. Dang., Appl. Phys. Lett. 80, 1322 (2002).CrossRefADSGoogle Scholar
  8. [8]
    H. Lohmeyer, K. Sebald, C. Kruse, R. Kröger, J. Gutowski, D. Hommel, J. Wiersig, N. Baer, and F. Jahnke, Appl. Phys. Lett. 88, 051101 (2006).CrossRefADSGoogle Scholar
  9. [9]
    I.C. Robin, R. André, A. Balocchi, S. Carayon, S. Moehl, and J. M. Gérard, Appl. Phys. Lett. 87, 233114 (2005).CrossRefADSGoogle Scholar
  10. [10]
    M. Hovinen, J. Ding, A. V. Nurmikko, D. C. Grillo, J. Han, L. He, and R. L. Gunshor, Appl. Phys. Lett. 63, 3128 (1993).CrossRefADSGoogle Scholar
  11. [11]
    J. Renner, L. Worschech, A. Forchel, S. Mahapatra, and K. Brunner, Appl. Phys. Lett. 89, 091105 (2006). J. Renner, L. Worschech, A. Forchel, S. Mahapatrad, and K. Brunner, Appl. Phys. Lett. 89, 231104 (2006).CrossRefADSGoogle Scholar
  12. [12]
    S. X. Jin, J. Li, J.Z. Li, J. Y. Lin, and H.X. Jiang, Appl. Phys. Lett. 76, 631 (2000).CrossRefADSGoogle Scholar
  13. [13]
    E. D. Haberer, R. Sharma, C. Meier, A.R. Stonas, S. Nakamura, S.P. Den-Baars, and E. L. Hu, Appl. Phys. Lett. 85, 5179 (2004).CrossRefADSGoogle Scholar
  14. [14]
    M. Kneissl, M. Teepe, N. Miyashita, N.M. Johnson, G. D. Chern, and R. K. Chang, Appl. Phys. Lett. 84, 2485 (2004).CrossRefADSGoogle Scholar
  15. [15]
    H. M. Ng, T.D. Moustakas, and S. N. G. Chu, Appl. Phys. Lett. 76, 2818 (2000).CrossRefADSGoogle Scholar
  16. [16]
    T. Ive, O. Brandt, H. Kostial, T. Hesjedal, M. Ramsteiner, and K.-H. Ploog, Appl. Phys. Lett. 85, 1970 (2004).CrossRefADSGoogle Scholar
  17. [17]
    T. Someya, R. Werner, A. Forchel, M. Catalano, R. Cingolani, and Y. Arakawa, Science 285, 1905 (1999).CrossRefGoogle Scholar
  18. [18]
    A. V. Nurmikko, and J. Han, Progress in Blue and Near-Ultraviolet Vertical-Cavity Emitters: A Status Report, edited by H. Li, K. Iga, VCSEL Devices (Springer, Berlin, 2002).Google Scholar
  19. [19]
    T. Tawara, H. Gotoh, T. Akasaka, N. Kobayashid, and T. Saitoh, Phys. Rev. Lett. 92, 2564021 (2004).CrossRefGoogle Scholar
  20. [20]
    E. Feltin, R. Butté, J.-F. Carlin, J. Dorsaz, N. Grandjean, and M. Ilegems, Electronics Lett. 41, 94 (2005).CrossRefGoogle Scholar
  21. [21]
    G. Christmann, D. Simeonov, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, Appl. Phys. Lett. 89, 261101 (2006).CrossRefADSGoogle Scholar
  22. [22]
    K. Sebald, P. Michler, T. Passow, D. Hommel, G. Bacher, and A. Forchel, Appl. Phys. Lett. 81, 2920 (2002).CrossRefADSGoogle Scholar
  23. [23]
    R. Arians, T. Kümmell, G. Bacher, A. Gust, C. Kruse, and D. Hommel, Appl. Phys. Lett. 90, 101114 (2007).CrossRefADSGoogle Scholar
  24. [24]
    M. Klude, T. Passow, H. Heinke, and D. Hommel, Phys. Stat. Sol. (b) 229, 1029 (2002).CrossRefADSGoogle Scholar
  25. [25]
    K. Sebald, H. Lohmeyer, J. Gutowski, T. Yamaguchi, and D. Hommel, Phys. Stat. Sol. (b) 243 1661 (2006).CrossRefADSGoogle Scholar
  26. [26]
    C. Kruse, S.M. Ulrich, G. Alexe, E. Roventa, R. Kröger, B. Brendemühl, P. Michler, J. Gutowski, and D. Hommel, Phys. Stat. Sol. (b) 241, 731 (2004).CrossRefADSGoogle Scholar
  27. [27]
    K. Otte, C. Kruse, J. Dennemarck, and D. Hommel, phys. stat. sol. (c) 3, 1217 (2006).CrossRefGoogle Scholar
  28. [28]
    T. Passow, K. Leonardi, H. Heinke, D. Hommel, D. Litvinov, A. Rosenauer, D. Gerthsen, J. Seufert, G. Bacher and A. Forchel, J. Appl. Phys. 92, 6546 (2002).CrossRefADSGoogle Scholar
  29. [29]
    H. Lohmeyer, C. Kruse, K. Sebald, J. Gutowski, and D. Hommel, Appl. Phys. Lett. 89, 091107 (2006).CrossRefADSGoogle Scholar
  30. [30]
    H. Lohmeyer, K. Sebald, J. Gutowski, R. Kröger, C. Kruse, D. Hommel, J. Wiersig, and F. Jahnke, European Physical Journal B 48, 291 (2005).CrossRefADSGoogle Scholar
  31. [31]
    J. M. Gérard, D. Barrier, J.Y. Marzin, R. Kuszelewicz, L. Manin, E. Costard, V. Thierry-Mieg, and T. Rivera, Appl. Phys. Lett. 69, 449 (1996).CrossRefADSGoogle Scholar
  32. [32]
    J.P. Reithmaier, M. Röhner, H. Zull, F. Schäfer, A. Forchel, P.A. Knipp, and T. L. Reinecke, Phys. Rev. Lett. 78, 378 (1997).CrossRefADSGoogle Scholar
  33. [33]
    A. Baas, O. El Daïf, M. Richrad, J.P. Brantut, G. Nardin, R. Idrissi Kaitouni, T. Guillet, V. Savona, J. L. Staehli, F. Morier-Genoud, and B. Deveaud, phys. stat. sol. (b) 243, 2311 (2006).CrossRefADSGoogle Scholar
  34. [34]
    D. Burak and R. Binder, IEEE J. Quantum Electron. 33, 1205 (1997).CrossRefADSGoogle Scholar
  35. [35]
    T. Rivera, J.-P. Debray, J.M. Gérard, B. Legrand, L. Manin-Ferlazzo, and J. L. Oudar, Appl. Phys. Lett. 74, 911 (1999).CrossRefADSGoogle Scholar
  36. [36]
    C. Kruse, H. Lohmeyer, K. Sebald, J. Gutowski, D. Hommel, J. Wiersig, and F. Jahnke submitted to xxx.Google Scholar
  37. [37]
    M. Röhner, J.P. Reithmaier, A. Forchel, F. Schäfer, and H. Zull, Appl. Phys. Lett. 71, 488 (1997).CrossRefADSGoogle Scholar
  38. [38]
    M. Schwab, H. Kurtze, T. Auer, T. Berstermann, M. Bayer, J. Wiersig, N. Baer, C. Gies, F. Jahnke, J.P. Reithmaier, A. Forchel, M. Benyoucef, and P. Michler, Phys. Rev. B 74, 045323 (2006).CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • K. Sebald
    • 1
  • H. Lohmeyer
    • 1
  • J. Gutowski
    • 1
  • C. Kruse
    • 2
  • T. Yamaguchi
    • 2
  • A. Gust
    • 2
  • D. Hommel
    • 2
  • J. Wiersig
    • 3
  • N. Baer
    • 3
  • F. Jahnke
    • 3
  1. 1.Semiconductor Optics, Institute of Solid State PhysicsUniversity of BremenBremenGermany
  2. 2.Semiconductor Epitaxy, Institute of Solid State PhysicsUniversity of BremenBremenGermany
  3. 3.Institute of Theoretical PhysicsUniversity of BremenBremenGermany

Personalised recommendations