Advertisement

Emission Characteristics, Photon Statistics and Coherence Properties of high-β Semiconductor Micropillar Lasers

  • S. M. Ulrich
  • S. Ates
  • P. Michler
  • C. Gies
  • J. Wiersig
  • F. Jahnke
  • S. Reitzenstein
  • C. Hofmann
  • A. Löffler
  • A. Forchel
Part of the Advances in Solid State Physics book series (ASSP, volume 47)

Abstract

We report on complementary experiment-theory investigations regarding the photon emission statistics and coherence properties of quantum dot-based semiconductor micropillar lasers with high β factors, i.e., a large coupling of spontaneous emission into the lasing mode. In terms of power-dependent first- and second-order photon correlation measurements, our results consistently reveal a smooth transition between the regimes of spontaneous and mainly stimulated emission. The gradual onset of lasing is accompanied by strong photon number fluctuations and distinct changes of the field coherence length. In particular, the regime of stabilized coherent emission is found to establish at significantly increased excitation levels above the lasing onsets. As was verified by detailed semiconductor-theoretical calculations on the characteristics of these type of resonator devices, the smooth transition from thermal to coherent emission should indeed become increasingly harder to determine with β → 1.

Keywords

Excitation Power Coherence Time Photon Statistics Coherence Property Coherent Emission 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J.-M. Gérard: Solid-State Cavity-Quantum Electrodynamics with Self-Assembled Quantum Dots, in: Single Quantum Dots-Fundamentals, Applications and New Concepts, Topics in Applied Physics 90 (P. Michler (Ed.), Springer 2003)Google Scholar
  2. [2]
    K. J. Vahala: Nature 424, 839 (2003), and references thereinCrossRefADSGoogle Scholar
  3. [3]
    M. Pelton et al.: Phys. Rev. Lett. 89,23, 233602 (2002)CrossRefADSGoogle Scholar
  4. [4]
    J. P. Reithmaier et al.: Nature 432, 197 (2004)CrossRefADSGoogle Scholar
  5. [5]
    P. Michler et al.: Science 290, 2282 (2000)CrossRefADSGoogle Scholar
  6. [6]
    E. Peter et al.: Phys. Rev. Lett. 95, 067401 (2005)CrossRefADSGoogle Scholar
  7. [7]
    T. Yoshie et al.: Nature 432, 200 (2004)CrossRefADSGoogle Scholar
  8. [8]
    A. Badolato et al.: Science 308, 1158 (2005)CrossRefADSGoogle Scholar
  9. [9]
    F. De Martini and G. R. Jacobovitz: Phys. Rev. Lett. 60(17), 1711 (1988)CrossRefADSGoogle Scholar
  10. [10]
    P. R. Rice and H. J. Carmichael: Phys. Rev. A 50(5), 4318 (1994)CrossRefADSGoogle Scholar
  11. [11]
    R. Jin et al.: Phys. Rev. A 49(5), 4038 (1994)CrossRefADSGoogle Scholar
  12. [12]
    S. M. Ulrich et al.: Phys. Rev. Lett. 98, 043906 (2007)CrossRefADSGoogle Scholar
  13. [13]
    S. Ates et al.: Appl. Phys. Lett. 90, 161111 (2007)CrossRefADSGoogle Scholar
  14. [14]
    M. Schwab et al.: Phys. Rev. B 74, 045323 (2006)CrossRefADSGoogle Scholar
  15. [15]
    N. Baer et al.: Eur. Phys. J. B 50, 411 (2006)CrossRefADSGoogle Scholar
  16. [16]
    A. Löffler et al.: Appl. Phys. Lett. 86, 111105 (2005)CrossRefADSGoogle Scholar
  17. [17]
    R. Hanbury Brown and R. Q. Twiss: Nature 177, 27 (1956)CrossRefADSGoogle Scholar
  18. [18]
    D. Burak and R. Binder: IEEE J. Quant. Electr. 33, 1205 (1997)CrossRefADSGoogle Scholar
  19. [19]
    J. Hendrickson et al.: Phys. Rev. B 72, 193303 (2005)CrossRefADSGoogle Scholar
  20. [20]
    S. Reitzenstein et al.: Appl. Phys. Lett. 89, 051107 (2006)CrossRefADSGoogle Scholar
  21. [21]
    B. Gayral et al.: Appl. Phys. Lett. 72, 1421 (1998)CrossRefADSGoogle Scholar
  22. [22]
    E. Moreau et al.: Appl. Phys. Lett. 79, 2865 (2001)CrossRefADSGoogle Scholar
  23. [23]
    D. C. Unitt et al.: Phys. Rev. B. 72, 033318 (2005)CrossRefADSGoogle Scholar
  24. [24]
    A. Daraei et al.: Appl. Phys. Lett. 88, 051113 (2006)CrossRefADSGoogle Scholar
  25. [25]
    R. Loudon: The Quantum Theory of Light, (Oxford Univ. Press, N. Y., 2000)zbMATHGoogle Scholar
  26. [26]
    C. Santori et al.: New J. Phys. 6, 89 (2004)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • S. M. Ulrich
    • 1
  • S. Ates
    • 1
  • P. Michler
    • 1
  • C. Gies
    • 2
  • J. Wiersig
    • 2
  • F. Jahnke
    • 2
  • S. Reitzenstein
    • 3
  • C. Hofmann
    • 3
  • A. Löffler
    • 3
  • A. Forchel
    • 3
  1. 1.Institut für Halbleiteroptik und Funktionelle GrenzflächenUniversität StuttgartStuttgartGermany
  2. 2.Institut für Theoretische PhysikUniversität BremenBremenGermany
  3. 3.Technische PhysikUniversität WürzburgWürzburgGermany

Personalised recommendations