Finite Element Simulation of Viscoelastic Damping Materials

  • Xiangming Zhang
  • Shaohong Yang
  • Liwei Chen
Part of the Communications in Computer and Information Science book series (CCIS, volume 2)


This article presents the numerical simulation of the static and dynamic response of viscoelastic materials with the finite element method. In particular, elastomeric solids which are of essential engineering interest are discussed. A rubbery elastic manner is assumed to be modeled with an Ogden-type strain energy function well-known from rubber elasticity. A Prony series represents the relaxation moduli is exploited in order to derive a recursive relationship. By using a general finite element software ANSYS, several representative numerical examples illustrate relaxation and creeping phenomena.


rubber-like materials viscoelasticity hyperelasticity finite element nonlinearity ANSYS 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ogeden, R.W.: Large deformation isotropic elasticity: on the correlation of theory and experiment for compressible rubberlike solids. Proc. Roy. Soc. Lind. Ser. A 328, 567–583 (1972)CrossRefGoogle Scholar
  2. 2.
    Treloar, L.R.G.: The Physics of Rubber Elasticity, 3rd edn. Oxford University Press, Oxford, UK (1975)Google Scholar
  3. 3.
    Ogeden, R.W.: Large deformation isotropic elasticity–on the correlation of theory and experiment for incompressible rubberlike solids. Proc. Roy. Soc. Lind. Ser. A 326, 565–584 (1972)CrossRefGoogle Scholar
  4. 4.
    Ogeden, R.W.: Non-linear Elastic Deformations. Ellis Horwood, Chichester, UK (1984)Google Scholar
  5. 5.
    Crisfield, M.A.: Non-linear Finite Element Analysis of Solids and Structures. In: Advanced Topics, vol. 2, John Wiley & Sons, Chichester (1997)Google Scholar
  6. 6.
    Simo, J.C., Hughes, T.J.R.: Computational Inelasticity. Springer, Heidelberg (1997)Google Scholar
  7. 7.
    Taylor, R.L., Pister, K.S., Goudreas, G.L.: Thermochemical Analysis of Viscoelastic Solids. International Journal for Numerical Methods in Engineering. 2, 45–59 (1970)zbMATHCrossRefGoogle Scholar
  8. 8.
    Simo, J.C.: On fully three-dimensional finite strain viscoelastic damage model: Formulation and computational aspects. Comput. Meth. In Appl. Mech. Eng. 60, 153–173 (1987)zbMATHCrossRefGoogle Scholar
  9. 9.
    Lee, E.H., Radok, J.R.M., Woodward, W.B.: Stress Analysis for Linear Viscoelastic Materials Trans. of the Society of Rheology III, 41–59 (1959)Google Scholar
  10. 10.
    Zienkiewicz, O.C., Watson, M., King, I.P.: A Numerical Method of Visco-Elastic Stress Analysis. Int. J. Mech. Sci. 10, 807–827 (1968)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Xiangming Zhang
    • 1
  • Shaohong Yang
    • 1
  • Liwei Chen
    • 1
  1. 1.Department of Mechanics, Naval University of Engineering, Wuhan 430033china

Personalised recommendations