A Fast B-Spline Pseudo-inversion Algorithm for Consistent Image Registration

  • Antonio Tristán
  • Juan Ignacio Arribas
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4673)


Recently, the concept of consistent image registration has been introduced to refer to a set of algorithms that estimate both the direct and inverse deformation together, that is, they exchange the roles of the target and the scene images alternatively; it has been demonstrated that this technique improves the registration accuracy, and that the biological significance of the obtained deformations is also improved.

When dealing with free form deformations, the inversion of the transformations obtained becomes computationally intensive. In this paper, we suggest the parametrization of such deformations by means of a cubic B-spline, and its approximated inversion using a highly efficient algorithm. The results show that the consistency constraint notably improves the registration accuracy, especially in cases of a heavy initial misregistration, with very little computational overload.


Free form image registration consistent registration B-splines inverse transformation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zitova, B., Flusser, J.: Image registration methods: a survey. Image and Vision Computing 21(11), 977–1000 (2003)CrossRefGoogle Scholar
  2. 2.
    Rueckert, D., Sonoda, L., Hayes, C., Hill, D., Leach, M., Hawkes, D.: Nonrigid registration using free-form deformations: application to breast MR images. IEEE Trans. on Medical Imaging 18(8), 712–721 (1999)CrossRefGoogle Scholar
  3. 3.
    Xiao, G., Brady, J., Noble, J., Burcher, M., English, R.: Nonrigid registration of 3-D free-hand ultrasound images of the breast. IEEE Trans. on Medical Imaging 21(4), 405–412 (2002)CrossRefGoogle Scholar
  4. 4.
    Shen, D., Davatzikos, C.: HAMMER: hierarchical attribute matching mechanism for elastic registration. IEEE Trans. on Medical Imaging 21(11), 1421–1439 (2002)CrossRefGoogle Scholar
  5. 5.
    Christensen, G., Johnson, H.: Consistent image registration. IEEE Trans. on Medical Imaging 20(7), 568–582 (2001)CrossRefGoogle Scholar
  6. 6.
    Johnson, H., Christensen, G.: Consistent landmark and intensity-based image registration. IEEE Trans. on Medical Imaging 21(5), 450–461 (2002)CrossRefGoogle Scholar
  7. 7.
    Cachier, P., Rey, D.: Symmetrization of the non-rigid registration problem using inversion-invariant energies: application to multiple sclerosis. In: Delp, S.L., DiGoia, A.M., Jaramaz, B. (eds.) MICCAI 2000. LNCS, vol. 1935, pp. 472–481. Springer, Heidelberg (2000)Google Scholar
  8. 8.
    Thirion, J.P.: Image matching as a diffusion process: an analogy with Maxwell’s demons. Medical Image Analysis 2(3), 243–260 (1998)CrossRefGoogle Scholar
  9. 9.
    Rogelj, P., Kovacic, S.: Symmetric image registration. Medical Image Analysis 10(3), 484–493 (2006)CrossRefGoogle Scholar
  10. 10.
    Zhang, Z., Jiang, Y., Tsui, H.: Consistent multi-modal non-rigid registration based on a variational approach. Pattern Recognition Letters 27(7), 715–725 (2006)CrossRefGoogle Scholar
  11. 11.
    Bookstein, F.: Principal warps: thin-plate splines and the decomposition of deformations. IEEE Trans. on Pattern Anal. and Machine Intell. 11(6), 567–585 (1989)zbMATHCrossRefGoogle Scholar
  12. 12.
    Lee, S., Wolberg, G., Shin, S.: Scattered data interpolation with multilevel B-splines. IEEE Trans. on Visualization and Computer Graphics 3(3), 228–244 (1997)CrossRefGoogle Scholar
  13. 13.
    Viola, P., Wells III, W.M.: Alignment by maximization of mutual information. In: Proc. of Fifth International Conference on Computer Vision, pp. 16–23 (1995)Google Scholar
  14. 14.
    Kwan, R.S., Evans, A., Pike, G.: MRI simulation-based evaluation of image-processing and classification methods. IEEE Trans. on Medical Imaging 18(11), 1085–1097 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Antonio Tristán
    • 1
  • Juan Ignacio Arribas
    • 1
  1. 1.Laboratorio de Procesado de Imagen, Universidad de Valladolid.Spain

Personalised recommendations